
ENGINEERING TRIPOS PART liB 2012 
4F11 SPEECH AND LANGUAGE PROCESSING Prof P C Woodland 

Solutions: 4F11 Speech and Language Processing, 2012 

1. 	 Speech Analysis and Speech Recognition Front-End 

(a) The desirable attributes are 

• 	 Reduce the raw bit rate to something manageable 

• 	 Remove information that does not discriminate between words/sounds 

• 	 Retain all information that disriminates between words/sounds 

• 	 Transform feature vector to be suitable for the classifier being used. [15%] 

(b) The steps in producing an MFCC feature vector are: 

• 	 Block processing, i.e. taking a frame of the speech signal every 10ms. This 
allows to use the assumption of quasi-stationary speech segments. 

• 	 Windowing using a Hamming window of 25ms This introduces less distortion 
(side-lobes) than a rectangular window. 

• 	 DFT of the windowed signal to obtain the magnitude spectrum 

• 	 Filtering using a triangular filterbank on the basis of the Mel scale. A typical 
number of filters is 19-24 for 8 kHz sampled data. This provides a smoothed 
representation of the spectrum while taking into account that the speech in 
lower frequency regions is perceptually more important as shown below: 
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• 	 Take the log of the filterbank coefficients This converts the multiplicative rela
tionship in the frequency domain between excitation and source into an additive 
one. 

• Take the DCT of the log filter bank coefficiEmts. Only retain a smaller number 
of MFCC elements, a typical value is 12. The zeroth coefficient is a measure of 
the frame energy. The formula for the DCT is 

f2 ~ [n(i - ~)7r]en Vp L..micos p 
. i=l 
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where P is the number of filterbank channels and mi is the energy in the ith 
channel. [30%] 

(c) Linear prediction uses an all-pole model of speech. The frequency response of 
the all-pole file (the linear prediction spectrum) can be converted to a cepstral rep
resentation by finding the log spectrum, and then taking the inverse DFT (or also 
by a direct recursion from the predictor coefficients).The key differences to MFCCs 
is that a linear frequency representation is used and an all-pole model of the speech 
(& hence the inherent assumptions) is used for smoothing, rather than the Mel scale 
filterbank which provides smoothing for MFCCs. [15%] 

(d) The delta and delta-delta coefficients allow to incorporate dynamic information 
about neighbouring feature vectors in time into the current vector. Define a static 
feature vector Yt (for example 12 MFCCs as outlined in (b)), then the delta param
eters are computed by 

?which is a linear regression using 2D data points. This yields the same number of 
delta coefficients as in the 'static' ~lFCCs. The delta-delta or acceleration coeffi
cients are obtained by computing the regression values on the first order differentials. 
The encoding of temporal information into the feature vector is commonly used to 
counteract the conditional independence of the observation vectors given the state 
in HMMs (a very poor assumption but one that gives HMMs the efficiency to be 
used with very large data sets). The size of the feature vector is substantially in
creased (three-fold) using this technique, consequently increasing the computational 
complexity. [20%J 

(e) This was not discussed in lectures. The frequency response of a constant linear 
channel will be multiplicative in the frequency domain and hence additive in the 
log spectral domain and hence the MFCC domain (since taking the DCT is a linear 
operation). Hence for channel compensation we need to estimate/remove the constant 
value. Methods are based on the idea of applying a high pass filter to remove very 
slow changes in cepstra  and often this can be implemented by simply removing the 
average value of each cepstral coefficient across a call (which needs to be estimated 
to be able to run with limited latency). Of course this doesn't affect the values of 
the delta and delta-delta coefficients. [20%] 

-

The question covered Mel frequency cepstral coefficients, differential coef
ficients and a part that would have been new to the students on cepstral mean normalisation. 
Most of this material is fairly straightforward so it was disappointing that there were no excel
lent answers. 
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2. Speech Recognition Search 

(a) Taking as an example the simple 4 word (AND, BILL, BIT, BEN) from lectures 
then use: [15%] 

START :J--i1I--i END 

To use a unigram language model: Add the language model probability (e.g. log( PBEN)) 

to the log-likelihood of the token at the start of each word. 

(b) To include a bigram language model with a linear lexicon simply need to put the 
bigram probabilities on the network links between the word ends and the word begin 
nodes. A back-off node can also be used for improved efficiency. [10%] 

(c) The Viterbi algorithm can be applied to the above structure (it is an HMM) not
ing that between models/words the transition probabilities come from the language 
model and not the internal phone level transition probabilities. 

For an N-state HMM, with observation distributions bi(ot) and state transition prob
abilities ai,j the Viterbi algorithm is as follows. 

Initialization: 
<Pl(O) = 1.0 
<pj(O) = 0.0 for 1 < j < Nand <Pl(t) 0.0 for 1 ~ t ~ T 

Recursion: 
for t = 1,2, ... ,T 

for j = 2,3, ... , N - 1 
...... compute <pj(t) = maxl~k<N [<Pk(t l)akj] bj(Ot) 
...... store the predecessor node: predk(t) 

Termination: 
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The sequence of models and hence the sequence of words can be found by back
tracing along the best state-level path. It is only necessary to store this path at word 
boundaries (the token-passing implementation includes explicit ways to do this) for 
efficiency. Note that an explanation based on token-passing is also a valid solution 
here! [20%J 

(d) Beam search. At each frame store the most likely token (log likelihood to that 
point). Set the log-likelihood of any token/path that is more than B (a log-likelihood 
difference) from the best path to -00. These paths then do not need to be extended. 
In practice keep an active list of models and only process the active models. Note 
that when paths are extended from an active model need to activate all connected 
models. By using only a (small) sub-set of active models the computational load 
is very considerably reduced both for model-internal token propagation and output 
probability computation. [15%J 

(e)(i) Triphones are context-dependent models of phones in which the model used for 
a particular phone depends on both the left and right context. Cross-word triphones 
include context from neighbouring words in determining the HMM to be used. They 
model co-articulation effects both within and across word boundaries. However they 
can greatly increase the complexity of the search network. [15%] 

(e)(ii) In general need to duplicate the first phone of each word and the last phone 
of each word (& and single phone words become expanded into n 3 versions if all 
triphones exist. Note that clustering techniques used in triphone training reduce the 
actual amount of expansion needed. the simple 4-word vocabulary used in lectures 
becomes [15%] 

(e) (iii) There are several possible approaches to reducing the computational load for 
cross-word triphones (these were only hinted at in lectures). One approach is to 
have a multi-pass search in which lattices or n-best lists are created from a simpler 
system (e.g. using word-internal triphones and a bigram) and then only the reduced 
search space represented by the lattice is rescored. An alternative is to use a tree
based lexicon - the simple approach to this needs to be modified for cross-word 
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triphones if a static network is used, but the idea can be used if the network is 
generated dynamically. Another valid approach is to use WFST based techniques to 
optimise the complete network for cross-word triphones (although this can interact 
with pruning strategies that rely on knowledge of word-position). [10%] 

~'f\~ CD'MtNQI1r~ .. . " . 
. This questIon covered basIC Vlterbl decodmg, beam search and cross-word tri

phones. Most candidates knew the basic material covered although the impact of cross-word 
triphones on recognition search was not in general well-answered. 
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3. Machine Translation Assessment and HMM alignment models 

(a) Automatic metrics attempt to capture human preferences in translation quality. 
The aim is to replace human judgements of translation quality, which are expen
sive and difficult to obtain. These metrics are used in system optimisation and in 
measuring progress in system development. 

Speech recognition is 'easier' than machine translation in that reordering effects are 
minor and a single reference transcription usually suffices. Metrics used in translation 
have to allow for reordering as well as the possibility of mUltiple, equally valid, 
translation references and hypotheses. [20%] 

(b) 	Calculation of the BLEU score is described in Lecture 13. 

• 	 For each sentence i, and for n = 1, ... ,4, gather the following n-gram counts: 


- c~ : the number of hypothesized n-grams 


- ~ : the number of correct n-grams, where the contribution of each dis
tinct n-gram is clipped to the maximum number of occurrences in anyone 
reference 

• Compute the precision for each n-gram order, n = 1, ... , N : Pn = C2::::i~) /C2~i c~) 
• The BLEU score is 

N 

BLED = BP *exp{LlOg~} 
n=l 

(calculation of BP, the Brevity Penalty, is ignored.) 

If it was possible to determine automatically where pairs of words or phrases are 
synonyms, perhaps by consulting an on-line dictionary, the computation of correct 
n-grams could be modified to allow full or partial credit for hypothesised n-grams 
which contain synonyms of the reference translations. [20%] 

(c)(i) The forward and backward probabilities are defined as cxj(i) P(aj = i,flleO 
and (3j(i) PUf+llaj = i, eD . [lO%J 

(c)(ii) 

P(aj i, ffle{) 	 = P(aj = i, Hle{) PUj+llaj = i, eO 
= cxj(i){3j(i) 

Noting that PUlleD = Li P(aJ = i, fIleD Li cxJ(i) , 	 [20%J 

P(aj = i, fIleD cxj(i){3j(i)
P(aj = ilft, eD 

PUtleO - Li cxJ( i) 

6 




(c) (iii) 

R J(r) fir) 

#(f Be) = L: L: L: I( e = e~r)) I( f = f;rl) P( ajrl = i !E(r) F(r)) 

r=l j=l i=l 'V' J 

p(e~r)+-+ fYJIE{r),F(r») 

#(f B e)
PT(f!e) Er #(f' B e) 

[1O%} 
(c)(iv) The distribution PT(f!e) could be made to dependend on the context of e 
based on each sentence that e appears in. Following the approach in triphone models, 
e could be replaced by 1- e r) where land r are the words preceeding and following 
e. Clustering techniques used for context-dependent acoustic models with discrete 
observation distributions could be used here. The distribution p(ajlaj~l' 1) could also 
be made context dependent, e.g. so that context of word ej~l could be introduced 
into the alignment model. [20%J 
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4. Weighted Finite State Networks 

(a) A complete path through an acceptor can be written as p = el ... en" ' where: 
the path p consists of np edges, el ... en" 

- the path starts at state ip = s(ed where ip is an initial state 
- the path ends at state jp = j(en ,,) where jp is a final state 

The arc weights and initial and final weights combine to form the path weight 

- Initial weights and final weights: ,X(ip) and pUp) 
- ® is the product of two weights 

To assign a weight to a string, the WFSA combines the weights of all paths which 
might have accepted a string, as follows: 
- Let x be a string constructed from symbols in the input alphabet L: : x E 2:* 
- Let P(x) be the set of complete paths which generate x, i.e. x = i(ed" ·i(en ,,) 

- Let Ef) be the sum of two weight values 
- The cost assigned to the string x by the transducer is [20%J 

(b)(i) 
[C](x) = [A](x) Ef) [B](x) 

[10%] 
(b) (ii) 

[C](x) = [AHx) ® [B](x) 

[10%] 

(b) (iii) 

[C11(x) = 

[10%] 

(c)(i) 

n n n 

I i-I i-I) IT P( I i-l)P( I i-I i-I) IT P( I )P( I )i-IIT P(Ui, Ci U 1 ,C1 = Ui C;, U 1 ,C1 C; U 1 ,C1 ;:::;;; Ui C; C; C;-l 

;=1 i=l i=l 

[10%) 
(c)(ii) The distribution p(cilc;-l) could be realised as an bigram language model. 
The vocabulary of this LM would be over cased words, i.e. a mix of upper and lower 
case words. The model parameters can be estimated using any of the backoff and 
discounting schemes discussed in lecture. 
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The distribution PT(ulc) is degenerate, i.e. it is equal to 1 if u is the lower case 
version of c, and it is equal to zero otherwise. No estimation is needed, although the 
corpus vocabulary can determine which words c for which the distribution PT(ujc) 
can be defined. [20%] 

(c) (iii) Defining the following automata: 
- An unweighted WFSA U to accept the string u1 
- An unweighted transducer T that maps each cased word c to its uncased form u 
- A weighted accepted G which implements the bigram language model p(ciICt-l) 
with log scores in the tropical semiring 
The cased sequence can be produced by carrying out the composition GoT 0 U, 
projecting on the input, and finding the short path through the resulting acceptor. [20%] 

,
et:o..JN..\ V'eJ'S CO'{\A\f\KJIiI! 

This question covered the use of semi-ring operations and a model used for true 
casing in machine translation. In general it was done well . 
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