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PARTIAL DIFFERENTIAL EQUATIONS AND VARIATIONAL METHODS 

Answer not more than three questions. 


All questions carry the same number ofmarks. 
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1 The strong form of the Stokes equations reads 

-V' ·2vV'su+V'p =/ 
V'·u=O 

(1) 

(2) 

where u is the velocity, v > 0 is the viscosity, p is the pressure, / is a prescribed forcing 

term and V'su = (V'u+ (V'u)T)j2. 

(a) Using index notation, derive the Stokes equations by considering mass and 

linear momentum balances for a body V. Recall that the stress is given by a = 2vV'su- pI 
and traction t = an, where n is the outward unit normal vector to a surface. [30%] 

(b) Equation (1) is sometimes written as -vV'· V'u + V'p /. For an 
incompressible flow, show that the two expressions are equivalent when v is constant. 

[30%] 

(c) Using Lagrange multipliers, show that minimising 

J= fvvV'su:V'su /·udV 

subject to V' . u everywhere in V is equivalent to solving the strong form of the Stokes 

problem. Use this to provide an interpretation for the pressure in incompressible flows. 

Hint: A : B = AijBij. 

[40%J 
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2 You are provided with an inextensible string of length lra/2 which is to be hung at 

its ends from two anchors that are at the same height. The density p (s) of the string varies 

along its length such that the hanging string fonns a circular arc of radius a. The distance 

along the string s is measured from its centre. 

(a) What must the distance between the two anchors be? [20%] 

(b) Provide expressions for the potential energy of the system and any constraints 

that must be satisfied in tenns of integrals with respect to ds. Make s the independent 

variable and use y = y(s). [30%] 

(c) Via minimisation of potential energy, show that the necessary p (s) for the 

string to hang in a circular arc is proportional to sec2 (s/a). [50%] 
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A domain is given by a half-plane. with a semi-circle of radius a centred at the 

origin removed (see Fig. 1). Consider the Laplace equation on this domain 

V2q, 0 for r > at 0 < e < 1'C 

aq, /an 0 on the wall and semi-circle 
{ q, - (.x2 - y2) 0(1) at most as r -t 00 

where (x,y) are the Cartesian coordinates and (r, e) the polar coordinates. 

y 

x 

Fig. 1 

(a) 	 Assuming a solution of the form 


q, R(r)H(e) 


use the method of separation of variables to deduce differential equations for 9 and for R, 

with a separation constant. [20%] 

(b) Find the boundary conditions for R and 9. 	 [20%] 

(c) Show that solutions for Hare ofthe form 

constant x cos(ne) 

where n is a positive integer. [20%J 

(d) Find the solutions of R for each n in (c). 	 [20%] 

(e) Determine the unique solution for q,. 	 [20%] 
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4 (a) Consider a 2 x 2 system of quasi-linear, first-order partial differential 

equations with independent variables t and x 

au au av 
at +all ax +a12 ax = 0 

av au av 
at +a21 ax +a22 ax 0 

where a coefficient aij = aij(u, v). State the condition for which this system is hyperbolic 

and explain how the concept of Riemann invariants can be used to solve this hyperbolic 

system. [30%] 

(b) Consider the system 

-a(p) a( m -0+- 2 ) (3)at m ax ~ +pa2 ­

where a is a positive constant. Show that the system is hyperbolic and find the eigenvalues 

of its characteristic equation and corresponding left eigenvectors. [30%] 

(c) Find p and min Eq. (3) in terms of the Riemann invariants. [40%] 

END OF PAPER 
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