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CRIBS 
Question 1 
(a) 

 
The inverse rule of mixtures gives the accompanying graph for transverse stiffness, the axial 
stiffness is linear with fibre content. 
 

  E1 = fEf + (1− f )Em = 0.4 × 340 + 0.6 × 3.40 = 138 GPa  
 

  
E2 =

f
Ef

+
1− f
Em

⎡

⎣
⎢

⎤

⎦
⎥

−1

=
0.4
340

+
0.6

3.40
⎡

⎣
⎢

⎤

⎦
⎥

−1

= 5.63 GPa   

 
(b) A laminate is made up of a stacked and bonded assembly of unidirectional plies, each having its 
fibre axis lying at a specified angle to a reference direction. They are used in preference to 
unidirectional composite material because they are most isotropic with regard to properties of 
interest.  
A balanced laminate is one where the laminate as whole does not exhibit any tensile-shear 
interactions for any loading angle (A16=A26=0).  Tensile-shear interactions are tensile strains arising 
from applied shear stresses and visa versa and result in in-plane distortion of the laminate.  
A symmetric laminate is one possessing a mirror plane lying in the plane of the laminate i.e. the 
stacking sequence in the top half reflects that in the bottom half. A symmetric laminate does not 
exhibit bending-stretching coupling (the coupling stiffness [B]=0), i.e. in-plane loading will not 
generate any out-of-plane distortion and vice versa.  
 
(c)  
(i) 

 
Substitution of the elastic constants in the equations below provides the components of the lamina 
stiffness matrix in the principal material axes  
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Q11 =
E1

1−ν12ν21

=
138

1− 0.3× 0.0196
= 139 GPa

Q22 =
E2

1−ν12ν21

= 9.05 GPa

Q12 =
ν12 E2

1−ν12ν21

= 2.72 GPa

Q66 = G12 = 6.9 GPa Q16 = Q26 = 0

[Q] =
139 2.72 0
2.72 9.05 0

0 0 6.9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

GPa

 

The transformed lamina stiffness matrices  for the +45° and - 45° plies can be found by 
substituting the above stiffnesses in the equations below (data sheet)  
 

  

Q11 = Q11c
4 + Q22s

4 + 2 Q12 + 2Q66( )s2c2

Q12 = Q11 + Q22 − 4Q66( )s2c2 + Q12 c4 + s4( )
Q22 = Q11s

4 + Q22c
4 + 2 Q12 + 2Q66( )s2c2

Q16 = Q11 − Q12 − 2Q66( )c3s − Q22 − Q12 − 2Q66( )cs3

Q26 = Q11 − Q12 − 2Q66( )cs3 − Q22 − Q12 − 2Q66( )c3s

Q66 = Q11 + Q22 − 2Q12 − 2Q66( )s2c2 + Q66 s4 + c4( )
where c = cosθ , s = sinθ

 

 

  

Q⎡⎣
⎤
⎦+45°

=
45.23 31.43 32.44
31.43 45.23 32.44
32.44 32.44 35.61

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

GPa

Q⎡⎣
⎤
⎦−45°

=
45.23 31.43 −32.44
31.43 45.23 −32.44
−32.44 −32.44 35.61

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

GPa

 

The only difference between the stiffness matrices for the two plies is that the shear coupling terms 
(terms with subscripts 16 and 26) for the -45° ply have the opposite sign from the corresponding 
terms for the +45° ply.   
 
The laminate extensional stiffness matrix [A] is found by substituting these distances, along with 
the lamina stiffnesses above into the defining formulae for [A]  
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A11 = ((z1 − z0 ) + (z4 − z3)) Q11( )
+45

+ ((z2 − z1) + (z3 − z2 )) Q11( )
−45

=

= 0.4 mm × 45.23+ 45.23( ) GPa

= 36.18 MNm-1

 

  

A22 = 0.4 mm × 45.23+ 45.23( )GPa

= 36.18 MNm-1

A12 = 0.4 mm × 31.43+ 31.43( ) GPa

= 25.14 MNm-1

A66 = 28.49 MNm-1

A16 = A26 = 0

 

Thus the laminate extensional stiffness matrix [A] is given by 

  

A⎡⎣ ⎤⎦ =
36.18 25.14 0
25.14 36.18 0

0 0 28.49

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
GPa ⋅mm  

It can be seen that A16=A26=0, hence there are no tensile-shear interactions - tensile 
(normal) strains resulting from applied shear stresses and vice-versa. The laminate is 
“balanced” apart from “symmetric”. 

(ii) The laminate is symmetric, hence [B] = 0 i.e. there is no coupling between bending and 
stretching. The moment per unit length (units N) is given by 
{M}=[D]{κ} 

  

Mx

M y

Mxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= D⎡⎣ ⎤⎦

κ x

κ y

κ xy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 
Beam formula:  (where is the bending moment (N m) 
 
   M = Mxb (where the width, mm) 
Also   Mx = D11κ x  so    ' EI ' = bD11

 
  
∴ ' EI ' = bD11 = 1.93×10 GPa ⋅mm4 = 1.93×10 

109N
m2 10−12 m4 = 1.93×10−2 Nm2  



4C2 (2013)   

Page 4 of 10 

Tip deflection from structures data book is  

  
δ =

FL3

3EI
=

FL3

3bD11

=
1× 0.13

3×1.93×10−2 = 17.27 mm  

 
Question 2 
(a) Filament winding is a process suited to automation, although limited to certain components 
shapes (tubes). Fibre tows i.e. bundles of fibres, are drawn through a bath of resin, before wound 
onto a mandrel or former of the required shape. The equipment comprises of (a) a creel stand, from 
which the fibre tows are fed under the required tension from a set of reels, (b) a bath of resin, 
through which the fibre tows pass via a set of guides, (c) a delivery eye, through which the fibres 
emerge, the position of which is controlled by a mechanical system and (d) a rotating mandrel onto 
which the fibre tows are drawn. The key parameters are the fibre tension, the resin take-up 
efficiency and the winding geometry.  
 

 
(b) The Tsai-Hill failure criterion (the formula for which is given in the Data Sheet) is a basis for 
prediction of whether a unidirectional composite ply will fail under a given stress state, expressed as 
normal stresses parallel and transverse to the fibre axis, and the shear stress parallel to the fibre axis, 
given the critical stresses for these three modes of failure. It effectively takes account of interactions 
between these modes, particularly transverse tension and shear parallel to the fibre axis, whereas the 
maximum stress criterion only considers each failure mode in isolation. 
 
(c) Internally pressurised thin cylinder with a radius r very small in comparison to the wall 
thickness t.   
Assuming that the cylinder radius r is very small in comparison to the wall thickness t, the 
relationship between internal pressure P and the stresses in the wall can be derived by balancing the 
forces exerted by the pressure and the stresses. 
Axial stress  

  
σ x =

Pr
2t

 

 
Hoop stress 

 
σ y = σh =

Pr
t
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  σ xy = 0   
 
If you treat one of the two plies as if they were present alone, then 

 

where c = cosθ, and s = sinθ 
 

  

σ1 = c2σ x + s2σ y = c2σ x + s2σ h

σ 2 = s2σ x + c2σ h

σ12 = −scσ x + scσ h

 

 

  
σ x =

σ y

2
 

 
Hence 

  

σ1 = c2 σ h

2
+ s2σ h

σ 2 = s2 σ h

2
+ c2σ h

σ12 (= τ12 ) = −sc
σ h

2
+ scσ h = sc

σ h

2

 

 
For θ  = 45º, c = s = 0.707 

  ∴σ1 = 0.75σ h              σ 2 = 0.75σ h           τ12 = 0.25σ h     
 
The Tsai-Hill criterion 
 

  

σ1
2

sL
2 −

σ1σ 2

sL
2 +

σ 2
2

sT
2 +

τ12
2

sLT
2 ≥ 1

∴σ1 = 0.75σ h              σ 2 = 0.75σ h           τ12 = 0.25σ h  

0.752σ h
2

4002 −
0.752σ h

2

4002 +
0.752σ h

2

202 +
0.252σ h

2

252 = 1

0.752σ h
2

202 +10−4σ h
2 = 1

0.6025σ h
2 = 202

∴σ h = 25.76 MPa  

 

For failure 

  
P =

σht
r

=
σh ⋅ t

r
=

25.74 ⋅10
300 / 2

= 1.71 MPa  

Since the gas rises to 2 MPa, it follows that the pipeline would be damaged. 
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An alternative process would be to put in the actual pressure and see whether it satisfies the Tsai-
Hill criterion. Either method would be acceptable.  

  
σ x =

Pr
2t

= 15 MPa  

  
σ y = σh =

Pr
t

= 30 MPa  

 

  

σ1

σ 2

σ12

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= [T ]

σ x

σ y

σ xy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where T⎡⎣ ⎤⎦ =
0.5 0.5 1
0.5 0.5 −1
−0.5 0.5 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 

 

σ1

σ 2

σ12

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

22.5
22.5
7.5

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

MPa  

 

  

σ1
2

sL
2 −

σ1σ 2

sL
2 +

σ 2
2

sT
2 +

τ12
2

sLT
2 ≥ 1

∴σ1 = 22.5  MPa          σ 2 = 22.5  MPa        τ12 = 7.5 MPa

22.52

4002 −
22.52

4002 +
22.52

202 +
7.52

252 > 1

 

Hence the pipeline would be damaged. 
 
(d) Treating one of the two plies alone neglects the changes in stress state induced by the constraint 
that the +45 ply imposes on the -45 plies and vice versa. The stress transverse to the fibre axis 
would largely be relieved by the presence of the other ply.  
A more rigorous analysis would require to:  
Calculate [Q] in principal material axes (1, 2), the transformed stiffness matrix  Q⎡⎣ ⎤⎦  in the global x-
y axes, the laminate stiffness matrix [A] and the stress resultants [N]. The strains would be estimated 
using 

 
The strains and the stresses in each of the plies in the principal axes would be estimated using the 
following equations 

  

ε1

ε2

γ 12

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= [T ]−T

ε x

ε y

γ xy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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σ1

σ 2

σ12

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
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= Q⎡⎣ ⎤⎦

ε1

ε2
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⎛
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Once the stresses in each of the plies in the principal axes are calculated, the average stresses can be 
found. 
 
Question 3 
(i) The failure strain of the epoxy matrix much exceeds that of the carbon fibres, thus the carbon 
fibres fail first.  A shear lag zone is developed along the broken fibres and this blunts out the local 
stress concentration so that a macroscopic transverse crack does not develop from the broken fibre.  
Instead, the load from the broken fibre is transferred back into the remaining composite in a diffuse 
manner.  With increasing remote load, other fibre breaks occur, in accordance with a Weibull 
statistical distribution in strength.  A peak load is achieved such that the remaining fibres are no 
longer able to bear the applied load. 
 
In contrast, the axial compressive strength is dictated by plastic microbuckling from a region of 
fibre waviness.  The matrix shears between fibres and the compressive strength is given by 

 where  is the shear strength and  is the fibre misalignment angle (on the order of a 
few degrees).  The microbuckle does propagate across the composite in a crack-like fashion, and so 
the compressive strength is dictated by the region of largest waviness.   
 
 
(ii)  The pull-out toughness is a result of the linear drop in traction T with crack opening 
displacement  u .  Consider the shear-lag problem.  The stress on the broken end of the fibre equals 
zero.  At the other end of the shear lag zone, write the tensile strength of the composite , the 
composite modulus as  and the fibre modulus as .  The matrix modulus is negligible 
compared to the fibre modulus and so the composite modulus scales with the fibre volume fraction 

 according to  

    =  
At this end of the shear lag zone, there is no-slip and so the axial stress within the fibre is 

= / .  
Axial equilibrium for the fibre within the shear lag zone dictates that  

     

where  is the shear stress on the fibre from the matrix.  Solution of the above differential 
equation gives  

     

where  is the length of the shear lag zone.  
 
The traction from the fibre drops from the peak value T=  to zero as the crack opens from zero to 
a value of .  Thus, the pull-out toughness is  
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Note that the toughness increases with diminishing shear strength .  

   
 
(iii)  A through thickness tensile stress develops due to the imposed moment M on a beam of depth t 
and finite initial curvature .  The applied bending moment M gives rise to a bending stress field of 
amplitude  

     
  
σb =

M (t / 2)
I

=
Mt
2I   

where I is the 2nd moment of area.
  

 
 
 
 
 
 
 
 
 
 
Now consider radial force equilibrium on a segment of the beam.   
 

  
2

σb
2

⋅
t
2

sinθ
⎛

⎝⎜
⎞

⎠⎟
= σ z R2θ  

 
For a small θ , this gives   

    
  
σ z =

tσb
4R

=
tκσb

4
=

t2κ M
8I

 

 
This tensile stress can lead to splitting of the beam at mid-depth. 
 
(iv)  Splitting of the panel occurs from the edge of the hole, due to the low mode II toughness of the 
CFRP.  These splits lead a reduction in the stress concentration associated with the hole, and 
consequently the panel is almost notch insensitive.   

 

 
0 

2θ 
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Question 4 
(a) The force resultant at the built-in end has the maximum value of 

  
Nx = σ t = Myt

I
=

FLRt

πR3t
=

FL

πR2
=

1×103 ⋅3×103

π ⋅ (40 / 2)2
= 2.38 ×103 Nmm−1 = 2.38 ×106   Nm−1 . 

For the CFRP, write  as the thickness of the 0 layers, and  138 GPa as the axial modulus of the 
0 plies (from table 2 of the databook).  The tensile strain allowable is taken to be  from 
table 1 of the databook.  Then, 

    
  
t0 =

Nx
E1e

=
2.38 ×106

138 ×109 ⋅0.4 ×10−2
= 4.31×10−3 m = 4.31 mm 

And the total thickness is t =   t0 / 0.8 = 5.4 mm.  
 
For the aluminium, the Young’s modulus is 70 GPa and tensile strain allowable is  giving 

    
  
t =

Nx
Ee

=
2.38 ×106

70 ×109 ⋅0.3×10−2
=11.3 mm 

 

 
 

(b)  The end deflection is    where   

For CFRP, this gives 
  
t0 =

FL3

3πE1R3u
=

1×103 ⋅33 ×103

3 ⋅π ⋅138 ×103 ⋅203 ⋅0.5
=5.18 mm, and a total wall thickness 

 of  t =  1.25 ⋅ t0 = 6.5 mm.  

For the aluminium we assume 
  
u =

FL3

3EI
 where  . 

This gives a thickness of t = 10.2 mm 
 
So take t = 6.5 mm for the CFRP and t = 11.3 mm for the aluminium. 
 
(c)  The lost profit is (Premium + Cost/mass ) ×  Mass  
Mass =  2πRtLρ = 2 ⋅π ⋅20 ×10−3 ⋅6.5×10−3 × 3 ⋅1500 = 3.67 kg    
For the CFRP,  mass = 3.67 kg and  cost is £100/kg 
For aluminium, Mass =  2πRtLρ = 2 ⋅π ⋅20 ×10−3 ⋅11.3×10−3 × 3 ⋅2700 = 11.50 kg  and cost is 
£2/kg 
 
Thus, lost profit for CFRP is  (£100 + £100) ×  3.67 = £734 
For Aluminium, the lost profit is (£100 + £2) ×  11.5 = £1173 
So choose CFRP. 
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(d) Use hand lay-up of pre-preg on a mandrel for a small batch run, followed by an autoclave cure. 
Filament winding or pultrusion would be suitable for large batch runs. 
In filament winding, on any curved surface, the fibres will tend to follow a geodesic path – i.e. the 
shortest one. This can cause problems with some shapes, since it may be difficult to ensure that 
fibres cover some parts of the surface or lie in certain orientations (0 or 90º).  


