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2 (a) Material damping is caused by hysteretic losses during cyclical 
straining of a material sample. The physical origin is at the atomic/molecular level, 
for example from dislocation movements or interaction of polymer chains through 
hydrogen bonds. Often, immaterial damping can be approximated by linear theory 
based on the correspondence principle of linear viscoelasticity. If measured values 
are available for the complex moduli of the material, it may be possible to predict the 
damped mode shapes and natural frequencies. Boundary damping is one name for the 
various dissipative processes that can occur in a built-up structure. Examples are 
micro-slipping at joints in bolted or riveted connections, air pumping at lap joints, and 
losses due to rattling or buzzing at non-rigid connections. 
Material damping is likely to dominate either because a single, monolithic piece of 
material is involved in the vibration, or because the material damping is so high that it 
dominates over boundary effects. An example of the former would be the vibration of 
a tuning fork, which has a mode which allows the fork to be held by the stalk without 
contributing much boundary damping. An example of the latter would be a panel 
with a damping treatment applied to a level that the loss factor becomes very high, 
such as a skin panel in a passenger aeroplane with attached internal trim. 
Boundary damping tends to dominate in any built-up system made of material with 
relatively low damping, such as steel or glass. Examples would be a naval ship, or a (~O/A,') 
glass window-pane. \.:' / vi 
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If the rigid ring is fixed and prevented from moving, this corresponds to adding a 
single constraint to the problem so interlacing should be seen, Fixing the ring means 
removing one degree of freedom, so the frequencies from part (a) would be expected 
to interlace between each pair of frequencies with the ring allowed to move. 

So sketch the solution to the frequency equation just found. The result is shown 

below: dashed line shows Jo(z) , solid line shows Jd,.z) which has zeros and maximin 
points interchanged with dashed line. 
Now superimpose a multiple of zJo(z) (dash-dot line) and see where it crosses the 

solid line: these intersections give the values of ka corresponding to the natural 
2 

frequencies, the details depending on the value of the multiplying factor 2Jra m 
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The result shows an intersection at z = 0 corresponding to the expected rigid-body 
mode at zero frequency. The next intersection lies above the first zero of Jo(z) , and 

below the first zero of J~z). The second intersection lies between the second zeros 
of these two functions, and so on. But the zeros of Jo(z) correspond to the natural 
frequencies of the fixed-edge membrane from part (a), so we see interlacing 
behaviour exactly as expected. 

(c) The membrane frequency of a given mode can only be changed by the effect of 

movement of the rigid ring if the ring is capable of motion with the same variation 

cosl sinn8 . For n 0 we have just seen that this corresponds to rigid displacement of 

the ring. For n 1, this variation corresponds to rigid rotation of the ring: the rotation 

has two degrees of freedom depending on the axis of rotation, and those correspond to 

the two choices cos8, sin8. So the n = 1 modes of the membrane are affecting by 

ring motion in a very sflnilar way to the n = 0 modes investigated in part (b), with a 

pair of rigid body modes at zero frequency, and the remaining natural frequencies 

interlacing with the results from part (a). 

For n > 1, the ring has no possible motion corresponding to cosl sinn8. The result 

is that the membrane behaves exactly the same as in part (a), with a fixed boundary, 

and the frequencies are unchanged. 
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Answers: 4C6 2013 

2 (b) Complex frequency given by iw - M-a-jJw~ ~ (a + jJw~)2 - 4w~1 
a {3wn(c) 1Jn ""'--+-­

2wn 2 
(d) Require cl = c3 . 

1 l' undamped natural frequencies Tk,
-1 V~ 

damped natural frequencies from (b). 
2 

3 (b) Boundary condition M au= -2:rtaT aul 
ar r=a 

2 
giving kalO(ka) = 2:rta m loCka) 
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