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2 (a) Material damping is caused by hysteretic losses during cyclical

straining of a material sample. The physical origin is at the atomic/molecular level,

for example from dislocation movements or interaction of polymer chains through

hydrogen bonds. Often, immaterial damping can be approximated by linear theory

based on the correspondence principle of linear viscoelasticity. If measured values

are available for the complex moduli of the material, it may be possible to predict the
damped mode shapes and natural frequencies. Boundary damping is one name for the
various dissipative processes that can occur in a built-up structure. Examples are
micro-slipping at joints in bolted or riveted connections, air pumping at lap joints, and

losses due to rattling or buzzing at non-rigid connections.

Material damping is likely to dominate either because a single, monolithic piece of

material is involved in the vibration, or because the material damping is so high that it
dominates over boundary effects. An example of the former would be the vibration of

a tuning fork, which has a mode which allows the fork to be held by the stalk without
contributing much boundary damping. An example of the latter would be a panel

with a damping treatment applied to a level that the loss factor becomes very high,

such as a skin panel in a passenger aeroplane with attached internal trim.

Boundary damping tends to dominate in any built-up system made of material with
relatively low damping, such as steel or glass. Examples would be a naval ship, or a } /
glass window-pane. ( O/
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If the rigid ring is fixed and prevented from moving, this corresponds to adding a
single constraint to the problem so interlacing should be seen, Fixing the ring means
removing one degree of freedom, so the frequencies from part (a) would be expected
to interlace between each pair of frequencies with the ring allowed to move,

So sketch the solution to the frequency equation just found. The result is shown
below: dashed line shows J4(z), solid line shows JE,(z) which has zeros and max/min

points interchanged with dashed line.
Now superimpose a multiple of z/g(z) (dash-dot line) and see where it crosses the

solid line: these intersections give the values of ka corresponding to the natural

27ra2m

frequencies, the details depending on the value of the multiplying factor
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The result shows an intersection at z = 0 corresponding to the expected rigid-body
mode at zero frequency. The next intersection lies above the first zero of Jy(z), and

below the first zero of J(z). The second intersection lies between the second zeros
of these two functions, and so on. But the zeros of Jy(z) correspond to the natural

frequencies of the fixed-edge membrane from part (a), so we see interlacing

behaviour exactly as expected.

(50%)

(c) The membrane frequency of a given mode can only be changed by the effect of
movement of the rigid ring if the ring is capable of motion with the same variation
cos/ sinn@ . For n = 0 we have just seen that this corresponds to rigid displacement of
the ring. For n =1, this variation corresponds to rigid rotation of the ring: the rotation
has two degrees of freedom depending on the axis of rotation, and those correspond to
the two choices cosé, sinf. So the n = 1 modes of the membrane are affecting by
ring motion in a very sfimilar way to the » = 0 modes investigated in part (b), with a
pair of rigid body modes at zero frequency, and the remaining natural frequencies

interlacing with the results from part (a).

For n > 1, the ring has no possible motion corresponding to cos/sinnf . The result
is that the membrane behaves exactly the same as in part (a), with a fixed boundary,

and the frequencies are unchanged.
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Answers: 4C6 2013

2
2 (b) Complex frequency given by iw = —;—[-a - ,8&),% * J (a + ,60);3 ) - 4a),? ]

(c)
(d)

3 (b
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2w, 2

Require ¢ =¢3.

M

Modes [ } } and [ 11 }, undamped natural frequencies \/—-‘E
m

damped natural frequencies from (b).

2
Boundary condition M a—; = —2:::&2"6—“
at ar
2ma’m
giving kaJy(ka)= Jo(ka)
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