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The solution to Q1 starts on the next page.
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(b)

(i) The .%-norm of the signal u(z) is defined by

flull2 = -\//_Z|u(t)|2dt
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(ii) Note that

) . « : .
913 = lcal= [ IGGe) lagie)? do
< 62 [ laGio)P do =Gl 123

A
A

15l < ||G|ls forany u#0
121l

=

To show that maximising LHS gives equality requires a judicious choice of u.
Idea: find @, where |G(j®)| achieves maximum then choose

u(t) = sinwpt
=y(t) — |G(jw,)|-sin(wet+ LG(jw,))

_ /energyratio - |Gljw)|

(Technical point: the integral of u2(¢) will — oo, so we need to take a
sinusoid of finite but very long duration).
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(a)

(i) G=M"'N is a left coprime factorisation over He, if M,N belong to

Ha, M being a square matrix, and

rank [N(s) M(s)] =

The factorisation is normalised if

p forall s withRe(s) >0ors=o0

M(jo)M(jw)* +N(jo)N(jo)" =1 forall ®

(i) Consider the following block diagram:
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Also considering the controlled system gives,
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(b)

Hence it follows that the above closed loop is internally stable for all
1A, Ap]lloo < €

’

Therefore the closed loop system remains stable for all such perturbations if

& (I-GK)™'M~!| <1/e, (bythe Small Gain Theorem).

©co

and only if
K —1
b(G,K) = H[ ; (I-GK)" Ml >e.
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@ See uttached [25%)
(i) X Y [30%]
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3.

4.

(a)
(b)

A sector nonlinearity is a function f(.) such that ae < ef(e) < pe for some constants o and §. The
function is then said to be in the sector (a, ), also denoted by o < f(.) < 8.

Circle criterion for the system shown in Fig.1: If « < f(.) < £ then the closed loop is globally asymp-
totically stable (with unique equilibrium at the origin) if the Nyquist locus of G(s) encircles the circle
D(—1/8,—1/a) as many times counter-clockwise as G(s) has unstable poles, where D(—1/53, —1/«)
is the circle with —1/8 and —1/« as end-points of a diameter.

Standard bookwork. Details are in Handout 4 of the 4F2 course. The solution should preferably
include a block diagram showing the transformations performed on the linear system and on the
nonlinear gain.

In this case we need to apply the Circle Criterion with @« = —k < 0 and =k > 0. As a — 0,
the circle of the criterion becomes a half-plane through —1/3, and as a becomes negative, what was
previously the interior of the circle now becomes its exterior. Thus the criterion requires the Nyquist
locus of G(s) to lie entirely inside the circle D(—1/k,1/k). This means that the Nyquist locus cannot
encircle the circle, which is ok because G(s) has no unstable poles. It can be seen (with the aid of a
compass) that the Nyquist locus shown in Fig.2 lies entirely within the circle D(—4,4) but not for
any value of 1/k smaller than 4 — see figure below. Thus the largest value of k for which global

asymptotic stability is assured by the Circle Criterion is |k = 1/4]|.

Nyquist Diagram

Imaginary Axis

Real Axis

Figure 1: Nyquist locus inside circle D(—4,4).

(a)

LaSalle’s Theorem: Let S C R™ be a compact invariant set. Assume there exists a differentiable
function V : S — R such that

Vi) <0Vze S
Let M be the largest invariant set contained in {z € S | V(z) = 0} (the set of z € S for which
V(z) = 0). Then all trajectories starting in .S approach M as t — oco.

Corollary: If the set {z € S | V(x) = 0} contains no trajectories other than z(t) = 0, then 0 is locally
asymptotically stable. Moreover, all trajectories starting in S converge to 0.

When using Lyapunov’s theorems to establish asymptotic stability of an equilibrium z = 0, it is
necessary to show that V(m) = 0 at z = 0 only. In many practical examples this is not true but
the conditions of LaSalle’s theorem, which are weaker, are satisfied. LaSalle’s Theorem can also be
applied to establish convergence to more general invariant sets, such as limit cycles.
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Let x1 = x, 9 = ©. Then the equation of motion becomes

{)'31 = X2 (1)
b
m m
At an equilibrium we need (&1, 22) = (0.0). ;1 =0 = z2 = 0. But (0) = 0, so for £ = 0 we need
¢(x1) = 0, which occurs only for ;7 = 0. Thus the equilibrium is (0.0), and it is unique. (The fact
that it is unique could also be deduced from part (d), which asks for global asymptotic stability to
be proved. Global asymptotic stability is only possible if there is a unique equilibrium.)

We have
ma3 o
Vi, z) = To2 4 / c(v)dv ()
0

Clearly V(0,0) = 0. A bit less obviously, [ ¢(v)dv > 0. If #1 > 0 this is clear, since ve(v) > 0. If
z1 < 0 it also holds, since the increments dv are negative in this case. Consequently, V(z1,z2) > 0
if (x1,22) # (0,0). V is thus a candidate Lyapunov function, and we investigate its derivative along
system trajectories:

Assuming & = f(x) we have

Viz) = VV(2)"f(x) (4)
= le(ar),ma) [ e e ] (5)
= —$2b($2) <0 if 2o 75 0. (6)

This is enough to prove stability of (0,0), but not asymptotic stability since V = 0 whenever z, = 0
even if x1 # 0. We need to invoke LaSalle’s theorem.

Suppose that, at some time ¢, x1(t) # 0,2z2(t) = 0. Then @5(t) = —c(x1)/m # 0. Thus there exists a
7 > 0 such that zo(t +7) # 0, and hence V(z(t +7)) < 0. So the only invariant set {z : V(z) = 0} is
(0,0). Furthermore, the set {z : V(z) < V(xo)} is an invariant set for any initial condition zo (since
V< 0), and it contains (0,0). Thus a trajectory starting at xo will converge to (0,0). But all of this
holds, no matter how large ||zo|| may be. Therefore (0,0) is globally asymptotically stable.




