
Part IIB Paper 4F3 Exam Paper Sample Solutions 2013

1. Solution:

(a) i. The function f : Rn → R is convex if for all a, b ∈ Rn and for all
β ∈ [0, 1].

f(βa+ (1− β)b) ≤ βf(a) + (1− β)f(b)

For n = 1 this implies that the curve is always beneath the chord:

(a, f(a))

(b, f(b))

ii. A necessary and sufficient condition for f to be a convex function is
that its Hessian matrix is positive semi-definite. If y is fixed then g(x) =

x2+y2+4xy has Hessian, d2g
dx2

= 2 > 0 and hence g is convex for any value
of y. Similarly for x fixed. However the Hessian matrix for f(x, y) =

x2 +y2 +4xy is H =

[
2 4
4 2

]
and this is not positive semi-definite since

e.g. its determinant is -12. [ Aside: Also note that f(x,−x) = −2x2 so

with a =

[
0
0

]
and b

[
2
−2

]
we have f(a) = 0, f(b) = −8 and with

β = 0.5

f(βa+(1−β)b) = f(1,−1) = −2 > βf(a)+(1−β)f(b) =
1

2
(0−8) = −4

and hence f is not a convex function.]

(b) i. The equality constraints determine the relationship between the pre-
dicted inputs and the predicted states. The state prediction equations
are:

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1

x3 = Ax2 +Bu2.



If we re-arrange these

−Ax0 −Bu0 + x1 = 0

−Ax1 −Bu1 + x2 = 0

−Ax2 −Bu2 + x3 = 0,

and rewrite in matrix form, we get:

−B I
0 −A −B I
0 0 0 −A −B I


︸ ︷︷ ︸

F


u0
x1
u1
x2
u2
x3


︸ ︷︷ ︸

θ

−

Ax00
0


︸ ︷︷ ︸

f

= 0.

Obviously, if both F and f are both multiplied by −1, this would be
equally correct.

[A number of candidates chose to unnecessarily substitute for x1, x2, x3
in the terms Axi complicating the expressions for F and f .]

The matrix H is trivially:
R

Q
R

Q
R

P


ii. R � 0, Q � 0, P � 0 are sufficient conditions for a convex objective,

H � 0, and if in addition R � 0 then the solution will be unique from
results on the linear quadratic regulator.

iii.

y =

y1y2
y3

 =

0 C 0 0 0 0
0 0 0 C 0 0
0 0 0 0 0 C


︸ ︷︷ ︸

Ce

θ

y
max

=

ymax

ymax

ymax


So, the optimisation in standard form is:

Minimize: θTHθ

Subject to: Fθ − f = 0

and

[
Ce
−Ce

]
θ −

[
y
max

y
max

]
≤ 0
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Alternatively, (and possibly more convenient from the point of view of
exploiting the structure of the problem in a solution algorithm),

ŷ =


y1
−y1
y2
−y2
y3
−y3

 =


0 C 0 0 0 0
0 −C 0 0 0 0
0 0 0 C 0 0
0 0 0 −C 0 0
0 0 0 0 0 C
0 0 0 0 0 −C


︸ ︷︷ ︸

Ĉe

θ

ŷ
max

=
[
yTmax yTmax yTmax yTmax yTmax yTmax

]T
.

Then the problem can be cast as:

Minimize: θTHθ

Subject to: Fθ − f = 0

and Ĉeθ − ŷ
max
≤ 0.

iv. • The new constraint on uk is non-convex, so the optimisation problem
is no longer a convex problem, and is substantially more difficult to
solve since it is no longer guaranteed that a local optimum is the
global optimum.

– Can form as a mixed integer quadratic program for which effec-
tive (but still exponentially complex in the worst case) solution
algorithms exist (not on syllabus)

– Computation of the exact solution may take a very long time
(the worst case problem complexity grows exponentially with
the number of the non-convex constraints). Although in this
case there are only 3 inputs to determine so that this is equiv-
alent to 33 = 27 convex optimization problems, which might be
quite feasible.

– A suboptimal solution might have to be accepted if computation
takes too long.

• The discontinuous input constraint means that if the plant is not
open-loop stable, the closed-loop trajectory could end up in a limit
cycle rather than at the origin.

[Rather few attempts correctly discussed the non-convexity of the allow-
able set of u and the resulting computational complexity.]

2. Solution:

(a) i. The receding horizon principle:

1. Sample current system state
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2. Optimise a finite length sequence of future plant inputs, subject to
constraints on the inputs, and predicted future states (and outputs).

3. Apply the first element of the sequence to the plant.

4. Discard the prediction, and wait until the next time step

5. Go to step 1.

The prediction horizon remains the same length, but starts at a point in
time 1 step into the future with respect to the original horizon. Hence,
the horizon recedes.

A receding horizon controller is a feedback controller, since it acts on
new information at each time step: at each time step the current state
measurement (estimate) is used to calculate a new optimal control se-
quence and only the first element of this is applied.

ii. Merits:

• Handles MIMO plants naturally

• Optimisation in the loop can improve performance by reducing vari-
ability in outputs

• Can handle constraints

• Can handle general nonlinearities - at least such problems can be
posed

• Constrained optimisation enables the plant to operate closer to the
edge of the feasible region, which can have economic benefits

• Receding horizon is a computationally tractable way of approxi-
mately solving an otherwise very difficult infinite horizon control
problem (e.g. with nonlinearities and constraints)

• Problem formulation in terms of “what” should be achieved by the
controller rather than “how” it should be achieved

• Can be intuitively reconfigured online (e.g. changing constraints,
updating plant model) to accommodate changes in circumstances
(e.g. varying plant dynamics, or faults).

• Can compute explicit solution (for small problems)

Drawbacks:

• A good quality model of the plant is necessary

• Numerical optimisation is more computationally demanding than
state feedback

• Certification of correctness of implementation of an iterative optimi-
sation algorithm is more difficult than certification of an analytical
feedback policy

• The cost function in the optimisation problem can be difficult to
tune

• Assumptions necessary for formal proof of stability can be restrictive

• The future disturbances and reference signals need to be assumed
or estimated.
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• In the constrained case if the quadratic programme has no feasible
solution then the method fails and some alternative scheme needs
to be determined in real time.

(b) i. We note that:

• The disturbance is perfectly measured and included in the prediction
model;

• There is no plant-model mismatch;

• With no disturbance, the controller would be stabilising (due to the
choice of P );

• The plant is fully reachable/controllable;

• The matrix Q > 0, so we cannot blame non-observability or non-
detectability of the the pair (Q1/2, A).

The constant disturbance d means that the origin is not an unforced
equilibrium — i.e. to stay at the origin a non-zero values of u is re-
quired. However, the cost function with xs = 0 and us = 0 is min-
imising a weighted quadratic function of the deviation of the state (and
therefore also the controlled output) and the input from zero. Since the
cost function is quadratic, the minimiser achieves a compromise between
deviation of u from zero and deviation of x from zero.

ii. We note that:

• The values Q, R and P might be changed in the future, so we cannot
simply find the analytical solution u = Kx and find a point xs so
that u = K(0− xs) balances the disturbance;

• The structure of the cost function may not be changed, so refor-
mulating in terms of ∆u is not allowed, neither is using an exact
penalty cost function.

The pair (xs, us) should be chosen to be a target equilibrium pair satis-
fying:

Axs +Bus +Bdd = xs

Hxs = 0.

Note that we then have,

(xk+1 − xs) = A(xk − xs) +B(uk − us)
zk = H(xk − xs)

and stability of the resulting MPC law (due to the choice of P ) gives
xk → xs and uk → us as k →∞.

iii. The new pair (xs, us) should be chosen to be a target equilibrium pair
satisfying:

Axs +Bus +Bdd = xs

Hxs = r.
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iv. By rearranging the previously states equations, the pair (xs, us) has to
satisfy: [

(A− I) B
H 0

] [
xs
us

]
=

[
−Bdd
r

]
A solution to this set of equations for any r will exist if the matrix (Note
that (I − A)−1 exists since ρ(A) < 1).[

(A− I) B
H 0

]
=

[
I 0

H(A− I)−1 I

] [
(A− I) B

0 H(I − A)−1B

]
has full row rank. Hence we require that the steady-state gain, G(1) =
H(I−A)−1B to have full row rank which implies that there needs to be
as many inputs as outputs.

[None of the attempts cited the form of P to deduce stability of the
equilibrium.]

3. Solution:

(a) G(s) = C (sI − A)−1B has a state-space realisation,

ẋ = Ax+Bu

y = Cx

and balanced realisations are defined for stable systems so we need the eigen
values of A to be strictly in the left half of the complex plane. The control-
lability Gramian, P , satisfies the Lyapunov equation,

AP + PAT +BBT = 0

and the observability Gramian, Q, satisfies

ATQ+QA+ CTC = 0

If the system is stable, controllable and observable then P > 0 and Q > 0.
A change of state-space coordinates exists such that P = Q = Σ in these
new coordinates where Σ = diag(σ1, σ2, · · · , σn) and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
are called the Hankel singular values. It we write the balanced realisation as[

A B
C 0

]
=

 A11 A12 B1

A21 A22 B2

C1 C2 0

 where A11 ∈ Rk×k etc

the reduced order truncated balanced realisation, satisfies

∥∥C (sI − A)−1B − C1 (sI − A11)
−1B1

∥∥
∞ ≤ 2× (σk+1 + σk+2 + · · ·+ σn)

Hence if σk+1 is small compared to, for example ‖G(s)‖∞, then this gives a
good approximate model.
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(b) i. The given state equations conform to those given in the attached Data
Sheet with identical notation. The state feedback controller is given by
uopt = −Fx where F = BT

2 X and X solves the CARE with A− B2F a
stable matrix. Also the derivation in lectures has assumed that (A,B2)
is controllable and (A,C1) is observable which are true since [B2 AB2] =[

0 2
1 0

]
, and

[
C2

C2A

]
=

[
1 0
0 2

]
both of which are clearly rank 2. We

need to first check that the given X =

[
±1 1
1 ±2

]
satisfy the CARE:

ATX +XA+ CT
1 C1 −XB2B

T
2 X =

[
0 0
2 0

] [
±1 1
1 ±2

]
+

+

[
±1 1
1 ±2

] [
0 2
0 0

]
+

[
1
0

] [
1 0

]
−
[

1
±2

] [
1 ±2

]
=

[
0 0
0 0

]
X

The stability of (A − B2F ) can be checked directly or equivalently by

checking X > 0. Clearly only X =

[
1 1
1 2

]
> 0, and then F =

[
1 2

]
and A−B2F =

[
0 2
−1 −2

]
whose eigen values satisfy λ2 + 2λ+ 2 = 0

and λ1,2 = −1 ± j which verifies stability, and give the corresponding
closed loop poles.

ii. The output feedback case also fits the form given in the Data Sheet. The
derivation given in lectures also assumed that (A,B1) is controllable
and (A,C2) is observable. Since C2 = C1 we have observability but

[B1 AB1] =

[
1 0
0 0

]
which has rank 1 and is not controllable. However

let’s check that the FARE is satisfied with Y =

[
1 0
0 0

]
when:

AY + Y AT +B1B
T
1 − Y CT

2 C2Y =

[
0 2
0 0

] [
1 0
0 0

]
+

+

[
1 0
0 0

] [
0 0
2 0

]
+

[
1
0

] [
1 0

]
−
[

1
0

] [
1 0

]
=

[
0 0
0 0

]
X

However Y is not positive definite, but just positive semidefinite, so

let’s check the eigen values of A − HC2 where H = Y CT
2 =

[
1
0

]
and

A − HC2 =

[
−1 2
0 0

]
with eigen values at 0 and -1, so there is an

unstable eigen value at λ = 0. This controller will hence produce closed-
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loop poles at −1± j, −1, 0. The controller will have transfer function,

K(s) = −F (sI − A+B2F +HC2)
−1H

= −
[

1 2
] [ s+ 1 −2

1 s+ 2

]−1 [
1
0

]
= − 1

s2 + 3s+ 4

[
1 2

] [ s+ 2
−1

]
= − s

s2 + 3s+ 4

The controller has therefore cancelled the plant pole at 0 because this
plant pole is not excited by the disturbance w1. However this results
in this pole not being stabilised by the controller and hence any initial
condition would not decay to zero.

[Very few attempts considered any of the controllability or observability con-
ditions.]

4. Solution:

(a) The H∞ norm of a transfer function G(s) is defined for G(s) ∈ H∞, i.e. all
the poles of G(s) have real part < 0, and hence the system is stable, when

‖G(s)‖∞ = sup
−∞<ω<∞

σmax (G(jω)) (1)

where σmax denotes the largest singular value. This gives the maximum gain
from the input to the output, i.e. if ȳ(s) = G(s)ū(s) then,

‖y‖2 ≤ ‖G(s)‖∞‖u‖2

Hence in assessing system performance if w represent disturbances and z
represent errors to be minimised in the face of the disturbances, then ‖G‖∞
gives the maximum (i.e. worst case) amplification of the disturbances. This
can also be interpreted on frequency-by-frequency basis. (In robust control
the small gain theorem and its variants give robust stability conditions in
the face of plant uncertainty, but this was not specifically covered in 4F3).

To calculate ‖G‖∞ one method is to take a grid of frequencies, ωi, and
calculate maxi σmax(G(jωi)) which gives a lower bound on ‖G‖∞ and will
give a good estimate of ‖G‖∞ with a fine grid. Alternatively in state-space
‖G‖∞ < γ if (and only if) the algebraic Riccati equation,

ATX +XA+ CTC + γ−2XBBTX = 0

has a solution, X > 0. A bisection search on γ can then be performed to
obtain ‖G‖∞ to any desired accuracy.

[Almost no attempts cited the Riccati equation method for calculating this
norm.]
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(b) Consider the block diagram:

K(s)

Ga(s) Gb(s)

�

6

- - - - -

?
��

?j j

jr

rw1

w2

w3

z1

u = z2

y

−
+ +

+

+

+

v

i. We wish to find a P (s) such that

 z̄1
z̄2
ȳ

 = P (s)


w̄1

w̄2

w̄3

ū



z̄1 = Gb (w̄2 +Ga(w̄1 − ū))

z̄2 = ū

ȳ = w̄3 + z̄1 = w̄3 +Gb (w̄2 +Ga(w̄1 − ū)) z̄1
z̄2
ȳ

 =

 GbGa Gb 0 −GbGa

0 0 0 I
GbGa Gb I −GbGa


︸ ︷︷ ︸

P (s)


w̄1

w̄2

w̄3

ū



[A number of attempts started eliminating y or u from the equations so
missing the point of this formulation.]

ii. The state equations for P are given by:

ẋa = Aaxa +Ba(w1 − u), v = Caxa

ẋb = Abxb +Bb(w2 + v) = Abxb +BbCaxa +Bbw2

z1 = Cbxb

z2 = u

y = w3 + Cbxb
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and combining these gives:


ẋa
ẋb
z1
z2
y

 =


Aa 0 Ba 0 0 −Ba

BbCa Ab 0 Bb 0 0
0 Cb 0 0 0 0
0 0 0 0 0 I
0 Cb 0 0 I 0




xa
xb
w1

w2

w3

u



=


A B1 0 B2

C1 0 0 0
0 0 0 I
C2 0 I 0


 x
w
u


where

A =

[
Aa 0
BbCa Ab

]
, B1 =

[
Ba 0
0 Bb

]
, B2 =

[
−Ba

0

]
,

C1 =
[

0 Cb
]
, C2 = C1.

iii. The form of the state equation for P (s) is the same as in the Data Sheet
with (A,B1, B2, C1, C2) as defined. Controllability of (A,B1) and (A,B2)
is not assured since could have a pole/zero cancellation between Ga and
Gb and if this were an unstable pole that would give a problem. Similarly
for observability. It is known that γ > minstabilizingK ‖F`(P,K)‖∞ if there
exist stabilizing solutions to the two ARE’s

XA+ ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

Y AT + AY +B1B
T
1 − Y (CT

2 C2 − γ−2F TF )Y = 0

F = BT
2 X

X > 0

Y > 0

A bisection search to find the minimum value of γ can be performed at
each stage checking whether the above conditions are satisfied or not. A
resulting controller is then as given in the data sheet.

K Glover/E N Hartley, May 2013
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Module 4F3 2013 Exam Answers

1.(b)(i)

F =

−B I
0 −A −B I
0 0 0 −A −B I

 , f =

Ax00
0

 , H =


R

Q
R

Q
R

P


(b)(ii) R � 0, Q � 0, P � 0 for convex problem with unique solution.

(b)(iii)

Ĉeθ − ŷ
max
≤ 0, where Ĉe =


0 C 0 0 0 0
0 −C 0 0 0 0
0 0 0 C 0 0
0 0 0 −C 0 0
0 0 0 0 0 C
0 0 0 0 0 −C

 , ŷ
max

=


ymax

ymax

ymax

ymax

ymax

ymax

 .
2.

(b)(ii/iii) [
(A− I) B
H 0

] [
xs
us

]
=

[
−Bdd
r

]
(b)(iv) Need G(1) = H(I − A)−1B to have full row rank which implies that there

needs to be as many inputs as outputs.

3.

(b)(i) X =

[
1 1
1 2

]
, F =

[
1 2

]
, closed-loop poles are −1± j.

(b)(ii) H =

[
1
0

]
and λi(A−HC2) = 0, −1 and hence the closed loop is not asymp-

totically stable.

4.

(b)(i)

 z̄1
z̄2
ȳ

 =

 GbGa Gb 0 −GbGa

0 0 0 I
GbGa Gb I −GbGa


︸ ︷︷ ︸

P (s)


w̄1

w̄2

w̄3

ū



(b)(ii)


ẋa
ẋb
z1
z2
y

 =


Aa 0 Ba 0 0 −Ba

BbCa Ab 0 Bb 0 0
0 Cb 0 0 0 0
0 0 0 0 0 I
0 Cb 0 0 I 0




xa
xb
w1

w2

w3

u


KG May 2013


