
Solutions to 4F10 Statistical Pattern Processing, 2013

1. Mixture models

(a) Gaussian mixture distributions can model arbitrary data distributions given enough
mixture components. This includes (with diagonal covariance mixture components) multi-
modal distributions; correlated distributions and non-symmetric distributions (a diagram
can be used to illustrate this to advantage), whereas a full covariance Gaussian can only
model Gaussian data but can’t model correlations.

Generalisation will depend on the number of parameters estimated. The number of pa-
rameters needed will be 2DM + M − 1 where D is the dimensionality of the data and
M is the number of mixture components. A full covariance model can model correlations
directly (still assumes basic Gaussian structure and symmetric, unimodal). It has a sym-
metric covariance matrix with D.(D + 1)/2 so the overall number including the mean is
D.(D+ 3)/2 . So for for large D (10’s or greater) then number of parameters involved can
be very high and a Gaussian mixture approach (or feature reduction) is preferred for better
modelliing and improved generalisation . [25%]

(b)(i) Log likelihood of data is

L(θ) =
n∑
i=1

ln p(xk) =
n∑
i=1

ln

[
M∑
m=1

p(xi|ωm)cm

]
[10%]

(b)(ii) Due to the form of the log likelihood use the substitution (from Bayes’ noting that
the cm is a prior probability)

P (ωm|xi) =
p(xi|ωm)cm

p(xi)

where P (ωm|xi) is the posterior probability of mixture component ωm being associated
with vector xi and the denominator here is given by the probability density of the vector
from the entire mixture distribution i.e. [20%]

p(xi) =
M∑
m=1

cmp(xi|ωm)

∂L(θ)

∂θm
=

n∑
i=1

1

p(xi)

∂ [p(xi|ωm)cm]

∂θm

Now using
∂ [ln p(xk|m)cm]

∂θm
=

1

p(xk|m)cm

∂ [p(xk|m)cm]

∂θm

yields
∂L(θ)

∂θm
=

n∑
i=1

P (m|xi)
∂ [ln p(xi|ωm)cm]

∂θm

1

(b)(iii)

∂ [ln p(xi|ωm)cm]

∂θm
=

∂

∂θm

[
ln cm −

1

2
ln(2π)− 1

2
ln(σ2

m)− ‖xk − µm‖
2

2σ2
m

]

For the mean of the mth mixture component

∂L(θ)

∂µm
=

n∑
i=1

P (ωm|xi)
(xi − µm)

σ2
m

and
∂L(θ)

∂σm
=

n∑
i=1

P (ωm|xi)
[
‖xi − µm‖2

σ3
m

− 1

σm

]

Now for gradient descent on the negative log likelihood (gradient ascent on log likelihood)
adds a proportion η of the gradient for the parameter at each iteration.

Gradient descent rules are (e.g. for mean and similarly for the variance) update on iteration
t+ 1 is:

µ(t+1)
m = µ(t)

m + η
n∑
i=1

P (ωm|xk)
(xi − µ(t)

m)

σ
(t)
m

2

Note that P (ωm|xk) is computed using the parameters θ(t). [25%]

(b)(iv) Compared to gradient descent EM does not require a learning rate to be set and
is guaranteed to reach a local minimum (gradient descent may do so). It does this by
optimising an auxiliary function of the log likelihood that has a unique global maximum
on each iteration. EM can require more iterations for convergence than gradient descent if
well tuned. Note that both are iterative schemes and initialisation is important. There is a
similar computational load for each per iteration. [20%]

2. MLPs

(a) Node activation function is y = tanh(z). Hence taking standard differentials (not in [15%]
notes ...)

dy

dz
= 1− tanh2(z) = 1− y2

(b) Advantage of tanh is due to the fact that its output range is between ±1 rather than
between zero and 1. This tends to lead to faster convergence of back-propagation training
when starting from small weights evenly distributed about zero. [10%]

(c) This is from notes but with a different activation function. We would like to minimise
the square error between the target of the output, t(xp), and the current output value y(xp).

In general we can write using the chain rule (for a single input/output pattern):

2

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

Now, for the output layer, let yi be the output of node i and zi the input to the activation
function

∂E

∂zi
=
∂E

∂yi

∂yi
∂zi

and since

∂E

∂yi
= yi − ti(xp)

and the activation function is tanh we have [20%]

∂E

∂w̃
(k)
ij

= (yi − ti(xp)).(1− y2i)

(d) In general for any weight in the network, required to calculate ∂E

∂w̃
(k)
ij

Applying the chain

rule

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

= δ
(k)
i x̃

(k)
j

where

∂E

∂z
(k)
i

= δ
(k)
i

and the δ’s are sometimes known as the individual “errors” (that are back-propagated).

For the output nodes the evaluation of δi is straightforward as shown above.

To evaluate the δi’s for hidden layers

δ
(k)
i =

∑
m

[
∂E

∂z
(k+1)
m

∂z(k+1)
m

∂z
(k)
i

]

where it is assumed that only the units in layer k + 1 are connected to units in layer k, or [25%]

δ
(k)
i = (1− (y

(k)
i)2)

∑
m

w̃
(k+1)
mi δ(k+1)

m

3

(e)(i) Here we get the usual problems with gradient descent in that we get overshoot if the
learning rate is too large and very slow learning if it is too small. Note that the rate will
also be dependent on the number of patterns before an update is computed. [10%]

(e)(ii) For batch training sum the error derivatives over all the training patterns. This leads
to an accurate determination of the error derivative and can be used with small problems
(together with momentum terms and approximate second order methods). Batch update
cannot be used for the largest problems/networks since updates through the entire training
set will be too infrequent for reasonable convergence. So normally an intermediate be-
tween batch and single sample is used (a mini-batch) that can use momentum terms and
adaptive learning rates. However note that updating every pattern saves memory by not re-
quiring the accumulation of all the error derivatives and can be optimised by maths library
routines. [20%]

3. Classifiers, Risk and SVMs

(a) For a classifier, f(x,θ), trained with parameters θ, the expected test error may be
expressed as

R(θ) =
∑
y

∫ 1

2
|y − f(x,θ)| p(x, y)dx

R(θ) is called the expected risk [10%]

(b) Normally it is not possible to find p(x, y), so the empirical risk Remp(θ) is used

Remp(θ) =
1

2m

m∑
i=1

|yi − f(xi,θ)|

It can be derived from the expected risk by replacing the density p(x, y) by the empirical
distribution defined by the training samples. [20%]

(c) For this problem f(x, θ) ∈ {−1, 1} and

R(θ) =
∫ 1

2
|1− f(x,θ)| p(x, y = 1)dx+

∫ 1

2
|−1− f(x,θ)| p(x, y = −1)dx

=
∫
{x:f(x,θ)=−1}

p(x, y = 1)dx+
∫
{x:f(x,θ)=1}

p(x, y = −1)dx

= P (f(x, θ) 6= y)

[10%]

(d)(i) The SVM is a linear classifier with with direction w and bias b. For the binary (two
class) problem, the training samples are correctly classified if [20%]

yi(〈w, x〉+ b) ≥ 0

(d)(ii)To allow for training data errors, slack variables, ξi ≥ 0, are introduced. This relaxes
the previous constraint to be

yi (〈w,xi〉+ b) ≥ 1− ξi

4

All the points that lie outside the required margin (of +/-1) will have ξ = 0. For a classi-
fication error of the training data to occur ξ > 1, so a simple upper bound on the training
errors is given by [20%]

N error ≤
m∑
i=1

ξi

(d)(iii) There are now two aspects of the optimisation: maximise the margin; minimise the
number of training errors. The balance of the two is commonly controlled by a variable,
C. The soft-margin classifier is obtained by minimising

τ(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi

subject to

yi (〈w,xi〉+ b) ≥ 1− ξi
ξi ≥ 0

The dual optimisation problem for this may also be set-up, now

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj 〈xi,xj〉

subject to 0 ≤ αi ≤ C and
∑m
i=1 αiyi = 0 . For correctly classified points that lie on the

margin, 0 ≤ αi ≤ C and ξi = 0. To determine b, pick a correctly classified point on the
margin and solve αi(ui 〈w, xi〉+ b) = 0. [20%]

4. Decision Trees

(a) A non-metric classifier can use properties of the data that do not have an implicit or-
dering, such as colour or type (e.g. type of fruit). These are useful when there is nominal
data in addition to the numerical data. For instance descriptions that are discrete and there
is no natural concept of ordering. Instances of fruit labelled by type and by weight are
examples. [20%]

(b)(i) To assess the purity of the nodes a node impurity function at a particular node N ,
I(N) is defined

I(N) = φ(P (ω1|N), . . . , P (ωK |N))

where there are K classification classes. The function φ() should have the following prop-
erties

• φ() is a maximum when P (ωi) = 1/K for all i

• φ() is at a minimum when P (ωi) = 1 and P (ωj) = 0, j 6= i.

5

• It is symmetric function (i.e. the order of the class probabilities doesn’t matter). [20%]

(b)(ii) The entropy purity function for a node N has the form

I(N) = −
K∑
i=1

P (ωi|N) log(P (ωi|N)) .

Calculation is straightforward, with P (wi|N) is the sample distribution of class wi in the
data at node N . The entropy satisfies all the properties of the purity function: entropy
is maximum for a K-class problem if P (wi) = 1/K for all i; entropy is at a minimum
if P (wi) = 1 and P (wj) = 0, j 6= i, assuming 0 log 0 = 0; the entropy is symmetric
(because the summation is symmetric). . [20%]

(b)(iii) One way to use the purity when constructing the tree is to split each node according
to the question that maximises the increase in purity (or minimises the impurity). The drop
in impurity for a binary split is

∆I(N) = I(N)− nL
nL + nR

I(NL)−
nR

nL + nR
I(NR)

where:

• NL and NR are the left and right descendants;

• nL is the number of the samples in the left descendant;

• nR is the number of the samples in the right descendant;

A threshold is often used, so that the tree is grown until the reduction in the impurity
measure fails to exceed some specified minimum. For example, we stop splitting a node
N when ∆I(N) = I(N) ≤ β for a threshold β. [20%]

(c) The purity function φ(N) at a nodeN is the least squares cost function based on the best
linear regression function that can be built for that data. At node N , let XN = [x1, . . . , xn]
be the training observations and let yN = [y1, . . . , yn]′ be the real output values. The least
squares cost function over the data at the N as

φ(N) = min
w
{
n∑
i=1

(yi − w′xi)2}

for which the optimum linear regression function f(x) = ŵ′Nx can be found as

ŵN = (XNX
′
N)′XNyN

(Lecture 10)
The best question to split each node is chosen is chosen based on ∆I(N) = I(N) as
described in the previous section, with φ() as the least squares cost. If the node is to be
split, the best split is chosen, and the regression function is calculated for each child using
the formula given. [20%]

6

5. Parzen Window estimates

(a) The window function is a valid PDF so∫
R

φ(x)dx = 1 ; φ(x) = 0

and ∫
R

φ(
x

h
)dx = h

Hence [15%]∫
R

p̃(x)dx =
∫
R

1

h
φ
(
x− xi
h

)
dx

=
1

n

n∑
i=1

∫
R

1

h
φ
(
x− xi
h

)
dx = 1

(b) The value of h determines the smoothness of the probability density estimate. The
value of h should vary inversely to the number of points; a typical form is hn = h√

n
. [15%]

(c)

Fp̃(a) =

a∫
−∞

p̃(x)dx =

a∫
−∞

1

n

n∑
i=1

1

h
φ
(
x− xi
h

)
dx =

1

n

n∑
i=1

a−xi
h∫

−∞

φ(v)dv =
1

n

n∑
i=1

Fφ(
a− xi
h

)

[20%]

(d) The derivation follows straight from the examples paper.

E{p̃(x)} = E
{

1

n

n∑
i=1

1

h
φ
(
x− xi
h

)}

=
1

n

n∑
i=1

1

h
E
{
φ
(
x− xi
h

)}

=
1

h
E
{
φ
(
x− xi
h

)}
As φ() is Gaussian distributed then

E
{
N
(
x− xi
h

; 0, 1
)}

=
∫
N
((

x− v
h

)
; 0, 1

)
N (v;µ, σ2)dv

=
∫
hN (x; v, h2n)N (v;µ, σ2)dv

= hN (x;µ, σ2 + h2)

Hence E{p̃(x)} = N (x;µ, σ2 + h2n) [25%]

7

(e)

E{p̃(x)} = E
{

1

n

n∑
i=1

1

h
φ
(
x− xi
h

)}

=
1

n

n∑
i=1

1

h
E
{
φ
(
x−Xi

h

)}
=

1

h
E
{
φ
(
x−X
h

)}

E
{
φ
(
x−X
h

)}
=

∫
φ
(
x− v
h

)
p(v)dv

From the definition of φ() it follows that

φ
(
x− v
h

)
=

{
1
2

x− h ≤ v ≤ x+ h
0 otherwise

so that

E
{
φ
(
x− xi
h

)}
=

x+h∫
x−h

1

2
p(v)dv =

1

2
(

x+h∫
−∞

p(v)dv−
x−h∫
−∞

p(v)dv) =
1

2
(F (x+h)−F (x−h))

It follows that [25%]
E{p̃(x)} =

1

2h
(F (x+ h)− F (x− h))

8

