
Solutions: 4F11 Speech and Language Processing, 2013 

1. HMM training 

(a) HMM assumptions: 	 [10%] 

• 	 The observations accurately represent the signaL Speech is assumed to be sta
tionary over the length of the frame. Frames are usually around 25msecs, so for 
many speech sounds this is not a bad assumption. 

• 	 Observations are independent given the state that generated it. Previous and 
following observations do not affect the likelihood. This is not true for speech, 
speech has a high degree of continuity. 

• 	 Between state transition probabilities are constant. The probability of from one 
state to another is independent of the observations and previously visited states. 
This is not a good model for speech. [10%] 

(b) (i) MFCCs. Take the log energies of the filter-bank energies mi and apply a 
discrete cosine transform. 

~Ld [n(i - ~)7r]
ro 	 = - m·cos 
~ d 	 dl 

i=l 

where d is the number of filter-bank channels. This will reduce the dimensionality of 
the feature vector and (mainly) diagonalise it so that diagonal covariance matrices 
are more appropriate. Use of Mel-fileter spacing approximates the resolution of the 
human ear. [10%] 

(b) (ii) Differential coefficients. Add time differentials of MFCCs and the normalised 
energy (or eo). These can be added with a regression formula of the type: 

A.y = L:~-l 7'(YHr Yt-r) 
t 2 "",D 2 

.L..tr=l 7' 

where D determines the size of the delta window and the differential is taken as the 
best straight line through this window. The second differentials can be added in a 
similar way. 

This adds information within a state on time evolution and overcomes (to an extent) 
the state-conditional independence assumption. [10%] 

(c) (i)The backward probability needs to be defined so that it can be combined with 
aj(t). 	Hence 


(3j(t) =P(OHb OH2, ... ,OTix(t) =j,)..) 


It can be computed recurSively backwards in time: 

Initialisation: 


l<js,N 
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Recursion: [20%J 
for t = T - 1, T - 2, ... ,2, 1 
... for j = N 1, N - 2, ... ,1 

N-l 

f3j(t) = L ajkbk(ot+l)f3k(t + 1) 
k=2 

(c)(ii) To find the posterior probability first note that multiplying the <l:j(t) and f3j(t) 
yields 

p(x(t) = j, 0 IA) = <l:j(t)f3j(t) 
and hence [10%] 

Lj(t) = P(x(t) = j 10, A) = p(~IA) <l:j (t)f3j (t) 

where p(OIA) can be computed from either the <l: or f3 values e,g, 

N-l 

p(OIA)= L <l:k(T)akN 
k=2 

(c) (iii) Re-estimation formula for the transition probabilities involve estimating counts 
for all transitions leaving a state and normalising by the estimate of the number of 
times that a state is occupied (so that the transition probabilities leaving a state 
automatically are normalised to unity). In terms of <l:j(t) , f3j(t), and Lj(t) this can 
be written: [20%] 

~ P(O(r)IA) I2r:/ <l:i (t)Clij bj (Ot+lf3j (t + 1)
aij = T

I2t=l Li(t) 

(d) Computational underflow. The magnitude of <l:i(t) decreases at each time step(since 
the values involved are normally all less than unity, and sometimes orders of mag
nitude less) this leads to computational underflow, even if double precision is used .. 
Two approaches have been used: 

• 	 Scale the <l:j(t) at each time step so that I2f=-;.1 <l:j(t) = 1. The product of 

the scale factors can be used 'to calculate p(OIA). Since this underflows, find 

10gp(0IA) as the sum of the logs of the scale factors . 


• 	 Use a logarithmic representation of <l:i(t). Many practical HMM systems (includ

ing HTK) use this solution. However, the forward recursion requires both mul

tiplication and addition of log-represented numbers. Use the following method 

to evaluate log(A + B) when knowing log A and 10gB. Using 


log (A + B) = log A (1 + ~) = log A + log (1 + ~) 
Only need to evaluate if ~ is sufficiently large. 
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2. Contex-Dependent Phone Models 

(a) Thiphones are models of individual phones that take into account the immediately 
preceding and following phonetic context. If the context is blocked at word bound
aries these are within-word triphones (effectively have a word-boundary context at 
word ends). If they take account of phonetic context across word boundaries they 
are cross-word triphones. Both model model co-articulation effects and since they 
can be smoothed or tied with other phone contexts are good models for speech. [15%] 

(b)(i) Phonetic decision trees, A tree grown at the state level (normally for each of 
three states in left-to-right phone models). Simple binary tree with yes/no questions 
at each node to split contexts into equivalence classes. The questions are typically 
about groups of phone contexts and are aimed at generalisation through for instance 
phonetic knowledge of similar phones. The trees are automatically grown and at each 
stage the question chosen is that which gives the largest increase in approximate log 
likelihood and/or by an occupancy threshold. At the leaf nodes there are groups of 
contexts which are tied and used to build models. The advantage is that there is no 
need to back off to shorter contexts as any triphone context will fall into one class 
or another. Furthermore the technique can be applied to contexts beyond triphones. 
Disadvantages are that for efficiency a very simple model of log likelihood using a 
single Gaussian approximation at all levels and that the tree building is greedy - i.e. 
it makes only locally optimal data splits. [30%] 

(b)(ii) Agglomerative bottom-up clustering, Assume all contexts are distinct and 
simple models of all those found in the training data can be estimated. However 
to ensure reliable estimates of more complex output distributions then parameter 
sharing is required via tying. The basic procedure is to take the simple models for 
all contexts and then iteratively merge similar states (using a between-state distance 
metric) until there is enough data for all states. This is simple but unreliable for 
contexts that occur rarely in training. It si also unable (without back-off) to provide 
suitable models for contexts not seen in training. [15%] 

(c) (i) A straightforward phone network without tree-structuring is not expanded with 
word-internal triphones. However the ability to tree-structure is greatly reduced but 
there is an improvement in modelling accuracy and so with beam search this can be 
a good trade-off for both speed and accuracy. For cross-word triphones, models that 
cross word-boundaries must be duplicated to take into account all the possible end 
phones and start phones. For single phone words this can lead to N3 expansion is 
all triphones are present where N is the size of the phone network. This means that 
it is infeasible to use a fully-expanded cross-word model for large tasks due to both 
memory and computational requirements. [20%] 

(c)(ii) Two approaches required. First is via multi-pass recognition, This first forms 
an intermediate reduced search space using simpler acoustic (& often language) mod
els than in the first search. Typically word lattices are produced and then recognition 
is run with cross-word triphones on the reduced space. An alternative is to use WF
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STs to optimise the network structure and have a minimal network (which might be 
an order of magnitude smaller than a naive implementation). A further choice would 
be via a dynamic network decoder in which the network is only generated when the 
extensions are within the search beam. [20%] 

3. Machine Translation 

(a) Some possible reasons 

• 	 Translation should respect document domain and genre. These differ in 

- Specialized vocabularies 
- Stylistic differences, e.g. active vs. passive voice 
- Use of headlines, passage and chapter numbers, web addresses, proper 

names, ... 
- Variable sentence lengths, e.g. weather forecasts vs. news stories Conse

quently The same translation system cannot be used for all genres and ext 
from one genre may not be suitable for building systems in another genre 

• Translation must depend on word sense, which varies across languages depend
ing on context 

• 	 Morphologically rich languages may require complex morphological analysis to 
be integrated into translation, and surface variability due to morphological vari
ants can lead to sparsity of individual tokens in text translations 

• 	 Movement due to characteristic word order and lead to exponential complexity 
growth with sentence length [10%] 

(b) Making simplifying conditional independence assumptions: 

put, ai, Jle6) 	 - PUtIJ, ai, e6) P(a{IJ, e6) P(JII) 
= rrf=l PT(Iileaj ) PA(a{IJ, I) PL(JII) 

where: 

• PL (JII) is the Sentence Length Distribution 

• PTUle) is the Word Translation Distribution 

• PA(a{IJ, I) is the Word Alignment Distribution [20%] 
(c) Formulae: 

• 	 Model-I: 

• 	 Model-2: 

PA(afIJ, I) = II
J 

PM2(ajlj, J, I) 
j=1 
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• 	 HMM Model: 
J 

PA(ailJ,I) = IIpHMM(ajlaj-l,I) 
j=l 

Differences: 

• 	 Model-l assumes that the link distribution is entirely fiat (all positions equally 

probable) 


• Model-2 assumes that the link distribution depends on the foreign word location 
j 

• 	 HMM-Model assumes that the link distribution depends on the link of the pre

vious word (that is, it has a history of one link) 


[20%J 
(d) This follows the derivation of probabilities for Model 2 in example paper 2. 

and the calculation of the posterior simplifies to 

[20%J 

(e) The process can be started with PT(fle) set to a fiat distribution. At each 
iteration the following quantity can be computed: 

J I 

#(f B e) = 2: 2: P(aj = ilei, It) l(e = ei)l(f = h) 
j=l i=l 

The numerator and denominator statistics can be gathered over multiple sentence 
pairs, prior to the normalisation step. The distribution is reestimated as PT(fle) = 

#U++e) [20%]Ej #(f'++e) 

(f) This iterative approach to estimation proceeds by seeding more complex models 
with model components, or alignments, computed using simpler models. Model I 
contains only a t-table. This is copied into model-2, with model-2 alignment distri
bution set initially either to a fiat distribution or initialised via counts from Viterbi 
alignments (for example). The HMM is seeded with the t-table from model 2, with 
the parameterised probability distributions seeded as was done for model 2. [1O%J 
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4. Weighted Finite State Transducers 

(a) A weighted acceptor over a finite input alphabet 'E is a finite directed graph with 
a set of nodes Q (states) and a set of arcs E (edges). 

• Each arc (or edge) e has an initial (or start) state s(e) and a final state I (e). 

• Each arc e is labeled with an input symbol iCe) and a weight wee) . 

• The weights take values in K 

The main difference between an Acceptor and a Transducer is that each arc e of a 
Transducer has also an output symbol ate) E 6., where 6. is the output alphabet. [20%] 

(b) (i) The pronunciation lexicon provides the pronunciation of each word in the ASR 
vocabulary in terms of the phone inventory of the ASR system. A WFST can be 
used to map from word sequences to sequences of phone symbols, corresponding to 
all the ways in which the words can be pronounced. An example is given in lecture. 
probabilities can be assigned to pronunciation alternatives, after suitable mapping 
depending on the chosen semiring. [15%J 

(b) (ii) A CI-to-CD transducer maps monophone sequences to triphone sequences. 

- e.g. the transducer should map ' ... d ae tax ... ' to ' ... d-ae+t ae-t+ax ... ' States 

are added to keep track of the phonetic context, as follows: 

For every three monophones, PI, P2, Ps : 

- add the states (Pl,P2) and (P2,PS) to the transducer 

- for the triphone t = PI-P2+PS , add the following arc between the two states: 


- Silence models, monophones, etc must be handled differently [15%] 

(c) (i) d(r) is the discount coefficient. Its role is to reduce the counts of seen events 
to allow some probability mass for unseen events. In this case it is applied directly 
to the relative-frequency based bigram probability. 
a(·) is the back-off weight. It is chosen to ensure that 'Er=l P(WjIWi) = 1 for the 
vocabulary of size V. 
C is the N-gram cut-off point t (i.e. only N -grams that occur more frequently than 
this are retained in the final model). The value of C also controls the size of the 
resulting language modeL [20%] 

(c)(ii) There is one state for every word, plus a unigram back-off state € : 

There is an arc for each pair of words wand w' for which I(w, w') > C 

(W) w'/p(w;lw) (w') 
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There is a back-off arc (with failure transition <p) from every word state (w) to the 
backoff state € 

¢/a.(w) 
(w) ----'+ € 

There is a unigram arc from the back-off state € to every word state (w') 

w'/ P(w' ) ( ')
E ""----+ W 

The scores are either probabilities or negative log likelihoods, depending on the semi
ring. [30%] 
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