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 ENGINEERING TRIPOS  PART IIB 
 
______________________________________________________________________ 
 
 Thursday 2 May 2013        9.30 to 11 
______________________________________________________________________ 
 
 
 Module 4C6 
 
 ADVANCED LINEAR VIBRATION 
 
 Answer not more than three questions. 
 
 All questions carry the same number of marks. 
 
 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Attachment: 
 4C6 Advanced Linear Vibration data sheet (10 pages). 
 
 

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS  
Single-sided script paper Engineering Data Book 
  CUED approved calculator allowed 
   

 
 

You may not start to read the questions 
printed on the subsequent pages of this 
question paper until instructed that you 

may do so by the Invigilator 
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1 (a) Sketch a typical testing arrangement for experimental modal analysis.  Your 

sketch should include items such as the impulse hammer, accelerometer, any amplifiers 

and filters and the data acquisition system.    [20%] 

 

 (b) Explain the importance of the following parameters: 

(i) the impulse hammer mass and tip stiffness; 

(ii) the charge amplifier gain and high-pass filter. 

Where appropriate, use formulae, sketches or calculations to illustrate your answers. [30%] 

 

 (c) An impulse is applied at one point on a structure and an accelerometer is 

fixed to another point.  The sampling rate of the data acquisition system is 5000 Hz and 

there are 8192 data points per channel.  A mode is identified at a frequency of 400 Hz 

with a Q-factor of 50.  The peak of the magnitude of the frequency-response function at 

this mode is 0.002 m/N.  For the contribution of this mode alone, give careful sketches 

of: 

(i) the magnitude of the frequency-response function; [20%] 

(ii) the modal circle.  [30%] 
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2 (a) Explain the distinction between material damping and boundary damping.  

Describe the circumstances under which one or the other would be expected to 

dominate. Give two examples of systems that you would expect to be dominated by 

material damping, and two likely to be dominated by boundary damping. [30%] 

 

 (b) A viscously damped system with N degrees of freedom has mass matrix M, 

stiffness matrix K and damping matrix C.  In the absence of damping, the nth mode 

vector is un  with natural frequency ωn .  If the damping matrix takes the particular 

form 

   C =αM +βK  

where α and β  are constants, prove that the undamped eigenvector un  still satisfies the 

damped equations of motion and find an expression for the corresponding damped 

natural frequency.  [20%] 

 

 (c)  If damping is light so that α  and β  are both small, find an approximate 

expression for the damped natural frequency.  If it is expressed in the form ωd (1+ iηn ) , 

find ηn  and sketch a graph of its variation with frequency. [20%] 

 

 (d) A two degree of freedom system is shown in Fig. 1: it consists of two 

masses m connected by springs of stiffness k and s and dampers with damping constants 

c1, c2  and c3 .  Write down the mass, stiffness and damping matrices.  For what values 

of the damping constants does this system satisfy the condition of part (b)?  For all cases 

that satisfy this condition, give expressions for the mode vectors and complex natural 

frequencies.  [30%] 

 
Fig. 1
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3 (a)  A circular membrane with radius a, tension per unit length T and mass per 

unit area m is fixed around its perimeter.  You may assume that the vibration modes 

expressed in polar coordinates r,θ  take the form 

   

sin
cos

!
"
#
nθ Jn(kr), n = 0, 1, 2, 3

 

where 

€ 

Jn  is the Bessel function of order n, and that the corresponding natural frequency 

€ 

ω  satisfies k2 = ω
2m
T

.  Explain how the edge boundary condition allows the natural 

frequencies and mode shapes to be found.  Sketch a few mode shapes.  (Plots of the 

Bessel functions for n = 0–3 are given in Fig. 2.) [25%] 

 

 (b) The membrane from part (a) is now fixed around its edge to a rigid circular 

ring of mass M that is free to move.  For the case of axisymmetric modes with n = 0, 

find the new boundary condition at the membrane edge.  Hence obtain an equation that 

determines the new natural frequencies.  What does the interlacing theorem lead you to 

expect about these frequencies?  Test this expectation, using graphical means. [50%] 

 

 (c) Now consider the other natural frequencies of the membrane from (a), with 

n > 0.  Explain which will change under the boundary conditions of (b), and which will 

not.  For the ones that do change, what does the interlacing theorem tell you about 

them?   [25%] 
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Fig. 2 
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4 A “bass reflex” loudspeaker can be idealised as shown in Fig. 3.  A piston of mass 

M and area A (the loudspeaker cone) is supported by a spring of stiffness K, and is 

enclosed by a rigid box of volume V which has a single opening in the form of a neck of 

area S and effective length L (including any end corrections). 

 

 (a) Explain briefly how the air in the neck region can be treated approximately 

as a rigid mass, and write down the Helmholtz resonance frequency that would be found 

if the spring K were infinitely stiff.   [15%] 

 

 (b) The piston is driven electrically with a harmonic force Feiωt . By 

considering the pressure change arising within the volume V, show that the equations of 

motion that govern small displacements u of the neck air-mass and x of the piston have 

the form 

  ρSL 0
0 M
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where c is the speed of sound in air, and ρ is the air density.  You may assume that 

pressure perturbations !p  in the box are related to density perturbations !ρ  by 

!p = c2 !ρ .    [35%] 

 

 (c) The output of the loudspeaker is the radiated sound pressure, which for low 

frequencies is determined by the change in net volume of the whole unit, including the 

neck air “piston”.  Show how the equations from part (b) can be used to obtain an 

expression for the frequency response function for this volume change in response to 

the given force amplitude F.  What happens to this transfer function at very low 

frequency ω ?  Explain the physical basis of this behaviour.  [50%] 
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Fig. 3 
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