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STATISTICAL PATTERN PROCESSING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 (a) The class-conditional distribution in a classifier for d-dimensional data is to be
either an M-component Gaussian mixture model (GMM) with each Gaussian component
using a diagonal covariance matrix, or a full covariance Gaussian model.

(i) Compare the two alternate forms of distribution in terms of the nature
of data that they can model. Discuss how the generalisation of the classifier
would be expected to vary as d increases for each of these distribution types. [20%]

(ii) Compare the computational cost of calculating the log likelihood for
each of these distributions, stating any assumptions made. [15%]

(b) An M-component mixture model is to be estimated using n samples of single
dimensional data x1, . . . ,xn. The probability density function associated with the mth

component, ωm, is p(x|ωm) and the component prior is cm.

(i) Write down the log likelihood L (θ) of the training data where θ is the
parameter vector of the model. [10%]

(ii) Show that the partial derivative of L (θ) with respect to a particular
parameter associated only with ωm, θm, is [10%]

∂L (θ)

∂θm
=

n

∑
i=1

P(ωm|xi)
∂ ln [p(xi|ωm)cm]

∂θm

(iii) If p(x|ωm) is Gaussian, find the gradient of the log likelihood with
respect to both the mean and the standard deviation. Hence state how the
maximum likelihood estimates of the mean and variance parameters can be
obtained using a gradient descent procedure. [25%]

(iv) Compare the use of gradient descent and Expectation-Maximisation
(EM) for the maximum likelihood estimation of the parameters of a Gaussian
mixture model. [20%]
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2 A Multi-Layer Perceptron (MLP) is to be trained using error back-propagation using
a least squares error criterion. For each input pattern, x, the target vector is t(x). The MLP
has L layers, with N(k) units in layer k, and the input to the MLP is d-dimensional.

The nodes use a hyperbolic tangent activation function of the form

y =
exp(z)− exp(−z)
exp(z)+ exp(−z)

(a) Find the differential of the node activation function in terms of the output of
the node. [15%]

(b) Give an advantage of using the hyperbolic tangent activation function over a
sigmoid logistic regression function for the hidden nodes. [10%]

(c) Find the partial derivative of the output error with respect to a weight going
from the final hidden layer to the output layer. [20%]

(d) Show how the partial derivative of the output error with respect to a weight
going to the final hidden layer can be computed. [25%]

(e) A gradient descent scheme is to be used to update the weights of the network.

(i) What factors need to be considered in setting the learning rate? [10%]

(ii) What are the differences between batch updates, sequential weight
updates, and the use of a mini-batch? What are the advantages and
disadvantages of each method? Consider both the number of MLP weights
and the training set size. [20%]
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3 A classifier is to be built for a two class problem. There are n, d-dimensional
training samples, x1, . . . ,xn, with class labels, y1, . . . ,yn. If xi belongs to class C1 then
yi = 1, and if it belongs to C0, then yi =−1.

(a) Assume the labelled training samples are generated under the distribution
P(X ,Y ) with density p(x,y). Give an expression for the expected risk, R(θ), for a
classifier f (x,θ). [10%]

(b) In most practical situations the true distribution P(X ,Y ) is not known. Give
an expression for the empirical risk Remp(θ) and explain how it can be derived from the
expected risk. [20%]

(c) Show that for this binary classification problem, the expected risk is the same
as the probability of misclassification: R(θ) = P( f (x,θ) 6= y). [10%]

(d) A Support Vector Machine (SVM) is to be built for this two class problem.

(i) Assuming the training data are linearly separable, what conditions must
be satisfied by the trained SVM for all the data samples? [20%]

(ii) Show how slack variables can be introduced to extend this condition to
the case of non-separable training samples. Assuming that the SVM has been
estimated to have a margin of±1, explain how the slack variables can be used
to obtain a simple upper bound on the number of training errors made by the
SVM. [20%]

(iii) For the case of non-separable training data, give the training objective
for the soft-margin classifier in its primal and dual forms. Explain how to
determine the bias b. [20%]
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4 A decision tree is to be built for a classification problem. Each training sample has
a number of binary attributes and a class label associated with it. A set of Q questions,
{q1, . . . ,qQ}, related to the binary attributes of the observations are specified for building
the decision tree.

(a) Explain why a decision tree built from this data can be described as a non-
metric classifier. Give an example of a problem in which the application of a non-metric
classifier would be appropriate. [20%]

(b) The decision tree training process requires a node impurity function.

(i) List the desirable properties of a node impurity function. [20%]

(ii) Give the equation for the entropy purity function and explain how it
satisfies the attributes described in (b)(i). Describe how the entropy purity
function is calculated for a particular decision tree node. [20%]

(iii) Explain how the purity function is used to build a decision tree. [20%]

(c) A regression tree is to be built. The training data for this task consist of m, d-
dimensional training observations x1, . . . ,xm. Each training sample xi is associated with
a real output value, yi , as well as the binary attributes described above. Each node in the
regression tree is to have its own linear regression function. Explain how the regression
tree can be built using the least squares cost function as the purity measure. Give equations
for the linear regression function associated with each node. [20%]
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5 The Parzen window density estimate p̃(x) for the 1-dimensional vector x is

p̃(x) =
1
n

n

∑
i=1

1
h

φ

(
x− xi

h

)
where the training data consists of samples x1 to xn. Assume that the window function
φ(x) is a valid probability distribution.

(a) Show that p̃(x) will be a valid probability density function. [15%]

(b) Discuss how the value of h affects the Parzen window density estimate. How
should the value of h be varied as n changes? [15%]

(c) For a probability distribution with density p(x), define the cumulative

distribution function as Fp(a) =
a∫
−∞

p(x)dx. Show that Fp̃(a) = 1
n ∑

n
i=1 Fφ (

a−xi
h ). [20%]

(d) Suppose the training samples are drawn from a Gaussian distribution with
mean µ and variance σ2. Assume that the form of the window function is also Gaussian.
Show that the expected value of the Parzen window density estimate is

E {p̃(x)}= N (x; µ,σ2 +h2)

Comment on the implication of this result. Note the following result may be useful:∫
∞

−∞

N (x;ν ,σ2
1 )N (ν ; µ,σ2

2 )dν = N (x; µ,σ2
1 +σ

2
2 ) [25%]

(e) Suppose the training samples are drawn from a distribution P(X) with
probability density function p(x). A Parzen window density estimate is based on the
uniform window function

φ(x) =

{
1
2 |x| ≤ 1
0 otherwise

Show that E {p̃(x)}= 1
2h(Fp(x+h)−Fp(x−h)). [25%]

END OF PAPER
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