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1 (a)  Show that one solution of the one-dimensional heat diffusion equation 

   ∂T
∂t

=α
∂2T
∂x2

, 

is    

   T (x, t) = 1
2 πα t

exp − x2 4α t"
#

$
% ,  −∞ < x <∞ , 

where T is the temperature, x the spatial coordinate, and α  the thermal diffusivity. 

Confirm that the initial condition at t = 0 corresponding to this particular solution is the 

delta-function δ(x) . You may find it useful to note that 

   exp −y2( )dy
−∞

∞

∫ = π .  [35%] 

 (b) Now use superposition to show that the general solution in the domain 

−∞ < x <∞   corresponding to the initial condition  T x, t = 0( ) = T0(x)   is 

   T (x, t) = 1
2 πα t

T0( !x )exp
−(x − !x )2

4αt

#

$
%
%

&

'
(
(
d !x

−∞

∞

∫ . [30%] 

 

 (c) Hence, or otherwise, show that the temperature distribution for 0>x  

corresponding to the initial condition 

    T0(x) =
0 x < 0
T̂ x ≥ 0

"
#
$

%$
  

where T̂  is a constant, is given by  

   T (x, t) = T̂
2
1+ erf x 4αt( )!
"

#
$ , 

where erf(x) = 2
π

exp(−z2)dz
0

x
∫   is the usual error function. [35%] 
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2 (a) Consider the superposition of two waves of similar wavenumber and 

frequency: 

   η(x, t) = A0 cos k1x −ω1t( )+ A0 cos k2x −ω2t( ) , 

where k2 = k1+δk  and ω2 =ω1+δω . Show that this takes the form of a slowly 

modulated wave-train whose envelope propagates at the group speed  

   cg =
δω
δk

≈
dω
dk

. [20%] 

 

 (b) Internal gravity waves in a stratified fluid are governed by  

   ∂2

∂t2
∇2uz( )+ N2∇⊥2uz = 0 , 

where uz  is the vertical velocity, N is a constant which measures the strength of the 

stratification, and  ∇⊥
2 ≡ ∂2 ∂x2 +∂2 ∂y2   is the horizontal contribution to the 

Laplacian. Show that the dispersion relationship corresponding to plane waves 

uz = ûz exp j k ⋅x−ωt( )#$ %&  is  

   ω = N k⊥ k ,   where  k⊥ = kx
2 + ky

2 and k = kx, ky, kz!" #$
T

. 

Hence show that the group velocity of internal gravity waves is given by 

   cg =
N
k 3 k⊥

k//
2 k⊥ − k⊥

2 k//#
$

%
& , 

where k// = kzêz  and k⊥ = k−k// . Confirm that cg  is perpendicular to the phase 

velocity.   [45%] 

 

 (c) A horizontal disc oscillates vertically in an unbounded, stratified fluid as in 

part (b), with angular frequency ω . Calculate the group velocity and sketch the wave 

patterns corresponding to the two frequencies N<<ω  and ω = N . In each case show 

the orientation of the wave crests relative to cg .  [35%] 
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3 The flux of a conserved quantity is given by q = aφ  where φ  is the concentration 

of the conserved scalar quantity and a is an incompressible velocity field. 

 

 (a) By considering conservation of φ  for a domain V with boundary ∂V , show 

that the governing partial differential equation for advective transport is 

   ∂φ
∂t
+ a ⋅∇φ = 0   . (1) 

     [30%] 

 (b) Express eq. (1) using index notation.  [10%] 

 

 (c) In the presence of diffusion, the flux becomes q = aφ −κ∇φ , where κ  is the 

scalar diffusion coefficient.  Using conservation of φ  for a domain V, show under what 

condition the governing partial differential equation for advective-diffusive transport is 

   ∂φ
∂t
+ a ⋅∇φ −κ∇2φ = 0   . (2) 

     [30%] 

 (d) Derive a weak form for the steady-state version of eq. (2).  Under what 

conditions will the solution of this steady-state version of eq. (2) correspond to a 

classical minimisation problem, and if the boundary condition is φ = 0  on ∂V , what 

functional will it minimise?   [30%]  
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4 A system of interest on the domain V is believed to be governed by the equation 

   −∇2u = f  

with boundary condition u = 0 on the boundary ∂V .  The observed response of the 

system is denoted by uobs . 

 

 (a) To find f such that u approximates uobs  in a particular sense, stationary 

points of the functional 

   F = λ ∇2u+ f( )+ 12 u−uobs( )2 +α
2
f 2

#
$
%

&
'
(
dV

V
∫ , (3) 

where λ  is a Lagrange multiplier and α  is a constant, can be computed. 

(i) Find the set of partial differential equations that must be solved to find 

the stationary points of F.   [30%] 

(ii) Subject to the constraint ∇2u+ f = 0 , identify the expression J that 

this problem minimises.   [10%] 

 

 (b) It is observed that the mean of uobs  over V is equal to β  and we wish to 

ensure that the mean of u is equal to the mean of uobs . 

(i) Formulate a modified version of eq. (3) that satisfies this mean-value 

condition.   [20%] 

(ii) Find the set of equations, reduced to partial differential equations 

where possible, that must be solved to find the stationary points of the 

problem that satisfies the mean-value constraint.  [40%]  

 

 

    END OF PAPER 


