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SECTION A

1 (short)

(a) A mass mA of metal at a temperature TA is put into thermal contact with another
mass mB of the same material at a temperature TB. Derive an expression for the
temperature of the masses TF when thermal equilibrium is reached. [3]

(b) Alternatively, a heat engine could be connected between the masses (initially at
their original temperatures). In this case show that, if the maximum possible work is to
be delivered by the engine, then the following identity must hold:

mA
dTH
TH

+mB
dTC
TC

= 0

where TH and TC are the instantaneous temperatures of mA and mB respectively. Hence,
or otherwise, derive an expression for the final temperature of the masses in terms of the
initial temperatures TA, TB and r, where r = mA/(mA +mB). [7]

2 (short)

(a) Use the first law of thermodynamics, in the form dq = du+ dw to show that for a
reversible process

T ds = du+ pdv = dh− vdp

and explain why this expression may also be used between equilibrium states joined by
irreversible processes. [3]

(b) On a T − s diagram, draw, clearly label and justify the trends for the following
processes involving a perfect gas:

(i) constant enthalpy;

(ii) constant pressure;

(iii) constant density;

(iv) reversible and adiabatic. [7]
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3 (long) Figure 1 shows a horizontal axis piston and cylinder arrangement. The
cylinder contains argon, initially at 1 bar and 300 K (p1,T1) in an environment also at
1 bar. The cylinder diameter is 0.1 m and the mass of argon is 0.01 kg. Initially, the
spring is unloaded and has a length of 1 m. It has a spring constant k of 200 Nm−1. The
piston may be assumed to be frictionless and there is no heat transfer, except as described
in (b) below. You may assume that argon is a perfect gas.

Fig. 1

(a) What is the initial volume V1 of the trapped gas? [6]

(b) The gas is slowly heated until the spring length is 0.5 m. Calculate the final gas
temperature. Also, calculate the work done by the gas and the heat transferred to the gas
during the process. [12]

(c) If, instead of process (b), the piston is displaced from its initial rest position by
a small distance and then released, show that the subsequent oscillations of the piston
will be as a spring-mass system with an effective spring constant of (k + γ p1A2/V1),
where γ is the ratio of the gas specific heat capacities. It may be assumed that the
expansion/compression oscillation process is isentropic. [12]
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4 (short) The specific work output w produced when a perfect gas flows steadily
through a given turbine depends only on the gas inlet velocity V1, the gas inlet temperature
T1, the specific heat capacity at constant pressure cp, the specific gas constant R, and the
blade speed U within the turbine.

(a) What is the minimum number of non-dimensional groups according to
Buckingham’s rule? [4]

(b) Suggest a possible complete set of non-dimensional groups. [6]
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5 (short) Figure 2 shows a device for controlling the water level in a small reservoir.
The gate is rectangular, 0.5 m wide (into the page), and the other dimensions are as shown
in the figure. The density of water may be assumed to be 1000 kg m−3.

(a) Calculate the mass M such that the gate begins to open when the water level is 2 m.
[5]

(b) It is suggested that, as an alternative method of controlling the water level at 2 m, a
hole could be made in the gate, and a valve fitted to control the flow. The smallest possible
size valve is to be used and the maximum expected water flow rate into the reservoir is
0.001 m3s−1. State, with your reasons, where the valve should be placed, and calculate
its effective flow area. [5]

pivot

mass M

2 m water

5 m

3 mgate

Fig. 2
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6 (long) A circular jet of water impinges onto an axi-symmetric deflector as shown
in Fig. 3. The velocity of the circular jet is V1 and its cross-sectional area is A1. After
deflection through 180◦ to form an annular jet of cross-sectional area A2, the velocity is
V2.

V1

V2

V2

A1 axi-symmetric
deflector

Fig. 3

(a) With the deflector stationary, and assuming the flow to be inviscid, give the
relationship between the velocities V1 and V2 stating clearly the physical basis for your
reasoning. [4]

(b) Calculate the relationship between the areas A1 and A2 stating clearly your
assumptions. [5]

(c) Show that the force F on the deflector is given by

F = 2ρQV1

where ρ and Q are the density and the volume flow rate of the water, respectively. [7]

(d) If now the deflector is moving to the right with velocity U (assuming U <V1), what
is the force exerted by the water on the deflector? [7]

(e) Show that the maximum power is extracted from the water jet when the deflector
velocity U equals V1/3. State clearly your assumptions. [7]
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SECTION B

7 (short) The arm of a rotary mixer consists of four semi-circular plates attached to a
thin light axle, as shown in Fig. 4. Each plate has mass M, diameter 2R, and the mass and
diameter of the axle and the thickness of the plates are negligible.

(a) Using an axis theorem, calculate the moment of inertia of the mixer arm around its
axis. [5]

(b) If M = 100 g, and R = 10 cm, determine the average power required to spin up the
mixer arm in vacuum in 1 second from rest to 600 rpm. [5]

2R

semi-circular plate

Fig. 4
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8 (short) A small ball is rolling without friction with initial velocity v on a track which
is initially horizontal and then goes around in a vertical loop of radius R, as shown in
Fig. 5. You can assume that the rotational kinetic energy of the ball is negligible.

(a) Calculate the speed of the ball as a function of the angle θ as it goes around the
loop. [5]

(b) What is the minimum initial speed required for the ball not to lose contact with the
track ? [5]

v

R
θ

Fig. 5
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9 (long) A probe is on a comet, made of porous ice, which is modelled as a sphere
of radius R with uniform density ρ . The small probe drills a narrow hole of diameter a
through the centre all the way across the comet as shown in Fig. 6.

(a) Ignoring the gravitational pull of the probe, derive an expression for the force on a
particle of mass m at radius r in the bore hole. You may assume that the net force on the
particle due to all material outside the sphere of radius r represented by the dashed line
in the figure is zero, and that the amount of missing mass from the bore hole is negligible
compared with the mass of the comet. [8]

(b) Obtain an expression for the work done in lifting to the surface a particle of mass
m initially at a distance r from the centre of the comet, in terms of R, ρ , m, r and G (the
universal gravitational constant). [6]

(c) Hence derive an expression for the total work done against gravity in lifting out all
the material from the bore hole. (Assume that the work done by the drill to break down
the material is negligible.) [8]

(d) Derive an expression for the frequency of oscillation of a particle that is released
into the empty bore hole. [8]

a

R
r

m

probe

comet

Fig. 6
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10 (short) Figure 7 shows a radar station tracking an unidentified flying object at a range
of 1 km due south moving in a horizontal plane at a speed of v = 200 m s−1 heading west
and with an acceleration α = 10 m s−2 as shown.

(a) Write down the velocity and acceleration in polar coordinates with the origin located
at the radar station, and hence find the radial component of the acceleration. [6]

(b) Calculate the instantaneous radius of curvature of the path. [4]

radar station

1 km

object

v = 200 m s–1

α = 10 m s–2

45°

Fig. 7
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11 (short) Figure 8 shows a schematic diagram of a particle of mass m tethered to fixed
supports by springs of stiffness k and 8k as shown, allowing for motion only in the x-y
plane.

(a) Determine by inspection the normal modes of the system and obtain expressions for
the natural frequencies in terms of the system parameters. [4]

(b) The system is set in motion with the initial conditions x = 0, y = 0, ẋ = 0, ẏ = 1 at
time t = 0. Derive an expression for the subsequent motion of the particle as a function
of time. [6]

kk

8k

8k
x

y

Fig. 8
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12 (long) Figure 9 shows a schematic diagram of a vibration transducer consisting of a
body of mass m connected to an outer casing through a spring-dashpot arrangement. The
absolute displacements of the body and the outer casing are x and y respectively and x is
measured with respect to the equilibrium position of the body. The relative displacement
of the body with respect to the casing is given by z = x− y. An initial choice of device
parameters is specified as m = 1 kg, k = 100 N m−1, λ = 5 N s m−1.

(a) Show that the equation of motion for this system can be written in the form

m
d2z
dt2 +αλ

dz
dt

+βkz =−m
d2y
dt2

and obtain values for α and β . [6]

(b) Steady sinusoidal motion of the base y =Y cosωt gives rise to a sinusoidal response
of the body given by z = Z cos(ωt− φ). Starting from the equation of motion, derive a
relationship between Z and Y as a function of ω . Calculate Z and φ when Y = 10 mm and
ω = 5 rad s−1. [8]

(c) The device is now configured as a seismic vibration transducer so that the
displacement of the body tracks that of the casing. Specify a new value for λ so as to
limit the response at resonance to within 40% of the nominal value while maximising
the working range of frequencies for device operation. Estimate the damped natural
frequency for this value of λ . [6]

(d) The device is dropped on the floor. The resulting acceleration can be modelled as
an impulse imparted to the outer casing of unit magnitude δ (t). Calculate the maximum
resulting displacement of the body for the choice of parameters in (c) above. How long
does it take for the displacement of the body to settle to within 0.1% of its maximum
value? [10]

y

m x

k

k λ

2λ

Fig. 9

END OF PAPER
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Answers

1 (a) mATA+mBTB
mA+mB

(b) TF = (TA)
r(TB)

1−r

2 (b)

(i) Constant h is also constant T

(ii) (∂T/∂ s)p = T/cp

(iii) (∂T/∂ s)v = T/cv

(iv) Reversible and adiabatic is also constant s

3 (a) 0.00624 m3 (b) 552.7 K, 417.5 J, 1200.8 J

4 (a) 3 (b) w
U2 = f

(
V1
U , U√

cpT1
,

cp
R

)
(These are the conventional groups)

5 (a) 467 kg (b) Bottom of the gate. 1.6×10−4 m2

6 (a) V1 =V1 (Bernoulli) (b) A2 = A1 (mass continuity) (d) F = 2ρA1(V1−U)2

7 (a) MR2 (b) ≈ 2 W

8 (a) u(θ) =
√

v2−2Rg(1+ cosθ) (b)
√

5Rg

9 (a) 4
3ρπGmr (b)2

3ρπGm(R2− r2) (c) 2
9(ρπa)2GR3 (d)

√
4ρπG/3

10 (a)~v =−200êθ ,~a = 10√
2

êr− 10√
2

êθ , r̈ = 47.07 ms−1 (b) 5.66 km

11 (a) Mode shapes: [0,1], [0,1], natural frequencies ωx =
√

2k/m,ωy = 4
√

k/m
(b) x = 0, y = 1

4
√

m/k sinωyt

12 (a) α = 3, β = 2 (b) 1.31 mm, 0.4 rad (c) 3.67 N s m−1, 16.9 rad s−1

(d) 43 mm, 1.25 s
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