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 EGT0 
 ENGINEERING TRIPOS PART IA 
______________________________________________________________________ 
 
 Thursday 4 June 2015        9 to 12 
______________________________________________________________________ 
 
 
 Paper 2 
 
 STRUCTURES AND MATERIALS 
 
 Answer all questions. 
 
 The approximate number of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Answers to questions in each section should be tied together and handed in 

separately. 
 
 Write your candidate number not your name on the cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper and graph paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Engineering Data Book  
 
 
10 minutes reading time is allowed for this paper. 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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SECTION A 

1 (short) Figure 1 shows a tall square closed can, with thin walls of uniform thickness 
t, subject to uniform external pressure P in excess of the internal pressure P0. The faces 
of the can remain planar under load. 

Derive formulae for the stresses σl and σc in the vertical wall shown in the figure, stating 
any assumptions you make.  [10] 
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2 (short) The semi-circular arch of radius R shown in Fig. 2 comprises three identical 
stiff, lightweight segments, pin-jointed at A, B and C, and built in at D. The arch is 
subject to a single applied force F acting vertically down at the centre of segment BC. 
     
Derive a formula for the maximum bending moment in segment AB. [10] 
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3 (short) The planar pin-jointed truss structure in Fig. 3 comprises an outer regular 
hexagon with all members of length L and two diagonal members QT and RU which do 
not touch each other. Node S is pinned to the ground, and node P cannot move 
horizontally. All members in the structure have the same cross-sectional area A and 
Young’s Modulus E. 
 
Derive an expression for the displacement of node P caused by the vertical load F as 
shown.   [10] 
 

 
  

Fig. 3!

P!

U!

T!

Q!

R!
S!

F!



 

 Page 5 of 12 (TURN OVER 

4 (short) Figure 4 shows a test rig used to determine the angle of friction between a 
block and a test strip. The test strip moves around the conveyor belt as shown, at an 
angle of θ to the horizontal. The block, which has mass m, is restrained by a linear 
elastic spring of stiffness k. In the absence of friction, the spring would extend by an 
amount e0. Therefore its extension Δe beyond this can be used to determine the angle of 
friction. 

Draw a polygon of forces for the block, and derive a formula to calculate the angle of 
friction, ψ, in terms of θ and measurements of e0 and Δe. [10] 
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5 (long) Figure 5 shows the design of a reinforced concrete beam, with a square 
section of side L and four steel reinforcing bars of circular cross section, diameter D, 
placed symmetrically with their centres a distance 2D from the adjacent sides. The 
dimensions of the beam and the material properties are as shown in the figure. It may be 
assumed that in tension the concrete has no strength. 

(a) Show that when the beam is subjected to bending such that the top of the beam is 
in compression, the location of the neutral axis of the beam, indicated by αL in the 
figure, is given by α = 0.267.  [14] 

(b) Calculate the second moment of area for the beam. [8] 

(c) If the steel has a yield stress of 350 MPa calculate the maximum bending moment 
that the beam can sustain before the steel yields. [8] 
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6 (long) Figure 6 shows a simply supported steel beam of length 2L subject to 
uniform loading per unit length, w. The beam has a rectangular cross-section with  
constant width b and variable depth, described by the function d(x) with x defined in the 
figure. The self-weight of the beam is small compared to the loading w. 

(a) If the steel has yield stress  
σ y  and the beam is designed so that the greatest 

longitudinal stress due to bending is equal to the yield stress all along its length, show 
that the depth of the beam should be: 

    
  
d x( ) = 3w

bσ y

L2 − x2( )   [12] 

(b) The design in (a) is infeasible because d(x) is zero at the supports, so an alternative 
strategy is to design the beam so that it avoids failure due to shear. Assuming that the 
yield stress in pure shear is   

τ y =
1
2σ y , calculate an alternative beam design in which the 

maximum shear stress (which is at the neutral axis) is just equal to the yield stress in 
pure shear all along its length.  [10] 

(c) Use your answers from parts (a) and (b) to sketch a design for the beam that would 
just avoid yield due to either longitudinal or shear stress, marking salient points. Briefly 
discuss any other issues that should be taken into account in the design. [8] 
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SECTION B 
 

7 (short) A metal on heating undergoes a change from a body-centred cubic (BCC) 
structure to a face-centred cubic (FCC) structure. At the change temperature, the lattice 
constant  a  has a value of 0.28 nm for the BCC structure and 0.35 nm for the FCC 
structure. 

(a) Sketch the unit cells of the BCC and FCC structures, showing the atomic sites. 
Determine the atomic density of the metal in atoms per  m3  for each structure at the 
change temperature.    [6] 

(b) Estimate the fractional change in length   ΔL / L  of a bar of the metal as it is heated 
through the change temperature. It may be useful to note that  

    
ΔL
L


1
3
ΔV
V

 

where   ΔV / V  is the fractional change in volume.  [4] 
 
 
 
 
 
8 (short)  

(a) Define the terms hardness and yield stress. A metal deforms in a standard tensile 
test according to the following relationship between true stress  σ t  and true strain  εt : 

  σ t = 450 εt    MPa.

 
In a forming operation a cylinder of this material is stretched in simple tension such that 
its length increases by 25%. Estimate the yield stress and Vickers hardness of the metal 
after forming.    [6] 

(b) An identical cylinder of the same metal is deformed in simple compression. What 
percentage change in cylinder length will produce the same hardness as that found in the 
stretched cylinder? Find the ratio of the loads at the end of the two forming operations.  [4] 
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9 (short) A fibre-reinforced composite consists of aligned carbon fibres in an epoxy 
resin matrix. The fibres have a Young’s modulus  n  times that of the epoxy matrix  Em . 
The volume fraction of the fibres is 

 
V f . Using the Materials Data Book expressions for 

the longitudinal and transverse Young’s moduli of a unidirectional fibre-reinforced 
composite show that: 

(a) the longitudinal Young’s modulus  EL  when the composite is loaded along the 
fibre direction is given by 

   
EL = Em 1+ (n −1)V f( )   [2] 

(b) the transverse Young’s modulus  ET  when the composite is loaded in a direction 
perpendicular to the fibres is given by 

   

ET =
nEm

n − (n −1)V f( )   [2] 

(c) the maximum ratio   EL / ET  occurs for 
  
V f = 0.5  and is independent of  n.   [6] 
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10 (short) A design for a strut requires that it shall carry an axial load without buckling 
(the Euler buckling load is   F = π2EI / L2

 where E is Young’s modulus, I is the second 
moment of area and L is the length). The strut has a fixed length and a hollow, thick-
walled circular section.  

(a) The thick-walled circular tube has an outer radius of 5t and a wall thickness of 2t. 
Show that the shape efficiency factor  φB

e  for such a strut is approximately equal to 2 using 

  
φB

e =
I

Iref
=

12I

A2
 

where A is the cross-sectional area and  
Iref  is a reference second moment of area of a 

solid square of the same cross-sectional area.  [5] 
 
(b) Taking the cross-sectional area to be a free variable, show that, in order to minimise 
mass, the following shape-dependent performance index M should be maximised 

 
M =

EφB
e

ρ
 

where ρ  is the density. Using the data in Table 1, choose (without detailed calculation) 
between a steel circular tube and a wooden square, based on this performance index. 
 

Material 
Young’s modulus 

(GPa) 

Density 

 (Mg m−3)  

  

Steel 210 7.8   
Wood 20 0.8    [5] 

Table 1 
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11 (long)  

(a) Under fatigue loading, a crack in a gas turbine blade made of titanium alloy grows 
at a rate 
 

  
da
dN

= 4 ×10−11ΔK5 (m cycle−1)  

 
where  a  is the crack length, N is the number of fatigue cycles and  ΔK  is the stress 
intensity factor range (measured in units of  MPa m1/2 ). The fracture toughness of the 
titanium alloy is   KIC = 30 MPa m1/2 . In service, the blade experiences a constant 
stress range with a  σmin /σmax  ratio of 0.1. During operation, the blade failed after 
10 000 loading cycles. Analysis revealed that failure resulted from the growth of an 
internal circular fatigue crack. The crack had grown to a radius of 5 mm, before the 
component failed by fast fracture. The stress intensity factor K for an internal circular 
crack of radius  a  is given by   

K = 2 / π( )σ πa
 
where σ  is the remote stress. 

(i) Determine the maximum stress normal to the plane of the crack during a 
loading cycle, and the stress range of the cycle.  [8] 

(ii) What was the initial crack length?  [10]  

(b) The blades of a gas turbine are to be manufactured from silicon nitride. A blade is 
30 mm long, it has a cross-sectional area of  20 ×10−6  m2

 and is attached to a rotor of 
radius R = 200 mm. When the rotor rotates at an angular velocity of  ω  rad s−1 , the axial 
stress   σ (x)  in the blade may be approximated by  
 

  σ (x) = ρω 2Rx  
 
where  x  is the distance from the tip and  ρ = 3200 kg m−3  is the density of the material.  

In service, the rotor operates at a maximum speed of  ω = 3000 rad s−1 . The design 
allows for a maximum failure probability of  10−7 . Assuming a Weibull modulus 
m = 10, specify a target uniaxial tensile strength which corresponds to a failure 
probability of 1% in tests conducted on samples of cross-sectional area  16 ×10−6  m2

 
and length 40 mm. Use the Weibull equation for the survival probability  Ps  from the 
Materials Data Book.    [12]  
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12 (long)  

(a) Distinguish a thermoplastic from a thermoset. Give two examples of each. Sketch 
the variation of Young’s modulus with temperature for  

(i) an amorphous thermoplastic; 

(ii) a thermoset. 

Label critical temperatures and account for transitions in behaviour.  [10] 

(b) The viscoelastic response of polymers can be modelled by a system of linear 
elastic springs and viscous dashpots. Write down the governing equations for the stress 
for each of the two components. Without carrying out any calculations, sketch strain 
versus time for the case of an imposed step in stress when a spring is connected with a 
dashpot (i) in series and (ii) in parallel. Explain why the plots take the forms you have 
sketched.      [8] 

(c) The deformation response of a polymer is to be represented by a linear dashpot of 
viscosity η     in series with a linear spring of Young’s modulus   E1 , as shown in 
Fig. 7(a). Derive the governing differential equation relating the stress to the strain. 
Hence find the harmonic response.   [8] 

(d) To simulate the deformation response of another polymer, an additional spring of 
Young’s modulus   E2  is now loaded in parallel with the system from part (c), as shown 
in Fig. 7(b). Use the “electrical circuit method” to write down the harmonic response.  [4] 

 

 
Fig. 7 
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Answers 

1. 
  
σ l =

−PL
4t

, σ c =
−PL
2t

 

2. 
  
FR 1

3
− 1

2
⎛
⎝⎜

⎞
⎠⎟

 

3. 
  
10FL

AE
  downwards. 

4. 
  
tanψ = Δe

e0

tanθ  

5. (b) 4.1x109 mm4 (c) 600kNm 

6. (b) 
  
d x( ) = 3ω x

bσ y

 

 (c) the two designs intersect at 
  
x = L

1+ k
, d x( ) = kL

1+ k
  where 

  
k = 3ω

bσ y

 

7. (a)  Atomic density BCC:  91.1×1027  atoms m−3 , FCC:  93.3×1027  atoms m−3   

 (b) 
   
ΔL
L
 −0.79%  

8. (a) 
   
σ y  213 MPa, H  = 639 MPa.    (b) 

  
εn = −0.20 i.e. 20% reduction, 

Fc
Ft

= 1.56.  

11.  (a)  (i)  σmax = 376 MPa, Δσ = 338.4 MPa;  

  (ii)   ao  = 35 µm, initial crack length 2× ao;   

 (b)  σ = 427 MPa  

12.  (c) 
  

ε̂
σ̂

=
iω +

E1

η
⎛
⎝⎜

⎞
⎠⎟

iωE1

 (d) 
  

ε̂
σ̂

=
E1 + iωη

E2(E1 + iωη)+ E1iωη
 


