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SECTION A

1 (short) Solve the difference equation

xn+2−5xn+1+4xn = 0

with initial values of x0 = 1 and x1 = 5. [10]

2 (short)

(a) Using l’Hôpital’s rule, find

lim
x→0

[

sinx− sin2 x
x2− x+ sin2 x

]

[5]

(b) Using the method of power series expansion, find

lim
x→0

[

(sinx− x)
x3

−
1

coshx

]

[5]

3 (short) For the matrix

A=

[

8 3
1 6

]

determine the eigenvalues and eigenvectors. [10]
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4 (long)

(a) Find the general solution to the differential equation

L
d2I
dt2

+R
d I
dt

+
I
C

= 0

describing the current response I of a resistor R, an inductor L, and a capacitor C
connected in series for the following three cases:

(i) R2−4
L
C

> 0;

(ii) R2−4
L
C

= 0;

(iii) R2−4
L
C

< 0. [10]

(b) Determine which case in (a) above gives an unstable solution for I. [5]

(c) Show that the current response I is oscillatory for R = 100 Ω, L = 1×10−2 H,
and C = 2×10−6 F, and determine the characteristic frequency. [8]

(d) If the initial conditions are I = 1 A and dI/dt = 0 at t = 0, derive the complete
solution for the current as a function of t. [7]
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5 (long) A complex variable z satisfies

|z− i|
|z+ i|

= a

where a is a constant.

(a) Derive an equation for the locus of z on the Argand diagram. [12]

(b) Find the condition that a should satisfy such that z has valid solutions with positive
values on the imaginary axis. [6]

(c) For a= 0.9, determine the intersections of the locus with the imaginary axis. [6]

(d) Sketch the locus of z on the Argand diagram for the value of a in part (c). [6]
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SECTION B

6 (short) Using Laplace transforms, solve the differential equation

d2x
dt2

+2d x
dt

+ x= 1

with initial conditions x= dx/dt = 0 at t = 0. [10]

7 (long)

(a) The response y(t) of a linear system to a general input f (t) is given by the
convolution integral

y(t) =
∫ t

0
f (τ)g(t− τ) dτ

where g(t) is the impulse response. Show that this integral and

y(t) =
∫ t

0
g(τ) f (t− τ) dτ

are equivalent. [3]

(b) A linear system with input f (t) is governed by the equation

α
dy
dt

+ y= f

where α is a constant.

(i) Without using Laplace transforms, find the step response of the system,
assuming that y(t) = 0 for t < 0. [8]

(ii) Find the impulse response g(t) of the system. [4]

(iii) Find the response to an input

f (t) =







1
β e

−t/β t ≥ 0

0 t < 0

where β < α . What happens to the response as β → 0? Comment briefly on your
result. [15]
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8 (short) Assuming that the birth rate remains the same throughout the year and that
people are born independently of each other, show that

Pn =
d!

(d−n)!dn

is the probability that n people chosen at random will all have different birthdays. The
number of days in a year is d and n is less than d. [10]

9 (short) The function f (x,y) is given by

f (x,y) = 2x3+6xy2−3y3−150x

Find and classify the stationary points of f (x,y). [10]

10 (long) An even function f (t) is periodic with a period T = 2 and f (t)= cosh(t−1)
for 0≤ t ≤ 1.

(a) Sketch f (t) in the range −2≤ t ≤ 4. [6]

(b) Show that

f (t) = sinh(1)+2sinh(1)
∞

∑
n=1

cosnπt
(1+n2π2)

is a Fourier series representation of f (t). [15]

(c) Using the solution in (b), deduce that

∞

∑
n=1

1
1+n2π2

=
1

e2−1

[9]
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SECTION C

11 (short) In computer graphics, a curved surface may be approximated by a mesh
of small triangles. Consider the following C++ data structures for representing a mesh
comprising 11119 triangles sharing 5580 vertices.

class vertex {

public:

double x; // x coordinate of vertex

double y; // y coordinate of vertex

double z; // z coordinate of vertex

};

class triangle {

public:

int v1; // v_list index for vertex 1

int v2; // v_list index for vertex 2

int v3; // v_list index for vertex 3

};

vertex v_list[5580]; // vertex list

triangle t_list[11119]; // triangle list

(a) If a double occupies 8 bytes and an int occupies 4 bytes, how much memory is
required to store the mesh? [3]

(b) Write a short C++ code segment to calculate the centroid of the first triangle in the
mesh. [7]
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12 (short) The linear difference equation

fi = fi−1+ fi−2 , with f0 = 0 and f1 = 1

generates the Fibonacci sequence 0,1,1,2,3,5,8 . . . The equation has solution

fi =
(λ1)

i− (λ2)
i

√
5

, where λ1 =
1+

√
5

2
and λ2 =

1−
√
5

2

Consider the following C++ methods for displaying the nth Fibonacci number.

// Method 1

int fibonacci(int n) {

if (n<=1) return n;

else return fibonacci(n-1) + fibonacci(n-2);

}

cout << fibonacci(n) << endl; // call to function in main program

// Method 2

float l_1 = (1.0 + sqrt(5.0))/2.0, l_2 = (1.0 - sqrt(5.0))/2.0;

cout << (pow(l_1, n) - pow(l_2, n))/sqrt(5.0) << endl;

For each method:

(a) State its algorithmic complexity. [5]

(b) Comment on its numerical accuracy. [5]

END OF PAPER

Page 8 of 8



 

Part IA 2015  

Paper 4: Mathematical Methods 

Numerical Answers  

Section A: 

1 

! 

xn =
4n+1

3
"
1
3

 

2  (a) -1 (b) -7/6 

3   Eigen values are 9, 5;  Eigen vectors are (3,1)  and (-1, 1) 

4  (c) f = 5000/2!   Hz 

5  (c) 9.526 ± 9.47 

 

Section B: 

9  (5, 0) – Minimum;  (-5, 0) – Maximum; (3, 4) & (-3, -4) – Saddle points  

 

Section C: 

11  (a) 267348 bytes  

12  (a) Method 1 is O(2n) (upper bound), Method 2 is O(1)  

       


