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Thursday 4 June 2015 2 to 4

Paper 6

INFORMATION ENGINEERING

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

Attachments: Additional copy of Fig. 2 and Fig. 4.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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SECTION A

1 A coupled mass-spring-damper system, with transfer function G(s), is to be
controlled in a standard negative feedback loop, as in Fig. 1, by a controller K(s). Figure 2
shows the Bode diagram of G(s).

(An extra copy of Fig. 2 is available, which you should use and attach to your answer to
this question.)

(a) If a proportional controller K(s) = kp is used, estimate the range of values of kp for
which the feedback system is stable. [6]

(b) G(s) has the form

G(s) = ksn (as2 +bs+1)
(cs2 +ds+1)

From Fig. 2 estimate the values of the constants a, b, c, d, k and n. [10]

(c) For the final design it is decided to use the controller

K(s) =
s+1
s+4

Draw the Bode diagram of this controller on the extra copy of Fig. 2 and estimate the
phase margin of the final design. [9]

r +// Σ // K(s) // G(s)
y //

− OO

Fig. 1
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2 (a) (i) Describe carefully what experiments might be carried out in order to
determine the Nyquist diagram of a system and how the diagram could be obtained
from the experimental data. [5]

(ii) Describe, with the aid of diagrams, how the gain and phase margins of a
feedback system may be determined from the Nyquist diagram of the uncontrolled
system. [5]

(b) A system with transfer function G(s) is to be controlled by negative feedback of gain
kp as shown in Fig. 3. The experimentally determined Nyquist diagram of this system is
given in Fig. 4, from which the answers to the following questions should be estimated.
Angular frequencies, in rad s−1, are shown on the diagram.

(An extra copy of Fig. 4 is available, which you should use and attach to your answer to
this question.)

(i) For what range of kp will the feedback system be stable? [3]

(ii) For what value of kp is the phase margin maximised? [2]

(iii) If kp = 2 and if r(t) = cos(2.5t), what is the steady state response of y(t)? [5]

(iv) Keeping kp = 2, estimate the range of frequencies over which the absolute
value of the sensitivity function of the feedback system, |1/(1+ return ratio)|, is
less than 1, and also the frequency at which this function is maximised. [5]

r̄(s) +// Σ // kp // G(s)
ȳ(s)
//

− OO

Fig. 3
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3 A pedalled electrically assisted bicycle (Pedelec) produces a proportional torque Te

to assist the torque produced by the cyclist, Tr. There is, inevitably, a lag τ in this process,
so the torque produced can be taken to follow the differential equation

τṪe +Te = Td

where the demanded electrical torque Td is given by

Td = k Tr (1)

The dynamics of the bicycle are described by the differential equation

Mv̇+λv = kG(Te +Tr)

where M is the combined mass of the bicycle and rider, v is their velocity and λv
approximates the combination of the wind and rolling resistances. kG represents the
gearing between the rider and the road.

Finally, it is assumed that the rider is acting as a simple proportional controller in
attempting to cycle at a constant speed vd . That is

Tr = kp(vd− v)

(a) Draw a block diagram of the full system, and find the resulting transfer function
from the desired velocity v̄d(s) to the actual velocity v̄(s). [6]

(b) If M = 80 kg, λ = 2.5 N s m−1, τ = 2 s and the product kp kG = 50 N s m−1, then
what is the largest value for the power-assist gain k such that the closed loop damping
ratio is no less than 70% of critical? If k is set to this value, what is the steady-state speed
error when vd = 6 m s−1 ? [8]

(c) It is proposed to modify the controller so that the demanded electrical torque, given
above in equation (1), is instead given by

T̄d(s) = 2
(

1+ sτ

1+ s(τ/4)

)
T̄r(s)

What are the new values for closed loop damping ratio and steady-state error? [7]

(d) Comment on how different the bicycle will feel to the rider when the new controller
replaces the old one. [4]
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SECTION B

4 (a) If P(ω) is the Fourier transform of a pulse p(t), calculate the Fourier
transform of p(t)e jω0t from first principles, and compare this with the standard result
in the Databook. [5]

(b) Hence (or otherwise) show that the Fourier transform of the raised cosine pulse

q(t) = p(t) [1+ cos(ω0t)] , where p(t) =

{
1 for |t|< π/ω0
0 otherwise,

is given by

Q(ω) = T
(

sinc[(ω−ω0)T ]+2sinc[ωT ]+ sinc[(ω +ω0)T ]
)

where T = π/ω0 . [8]

(c) Calculate the value of Q(ω) at ω = π
T {0, 0.5, 1, 1.5, 2, 2.5, 3}, and sketch Q(ω)

over the range −3π
T ≤ ω ≤ 3π

T . [6]

(d) If the pulse q(t) is modulated onto a carrier wave of frequency ωc to give a signal
pulse

s(t) = q(t)cos(ωct) , where ωc� ω0 ,

calculate the bandwidth in Hz of s(t), between the first zeros of its spectrum on either side
of the carrier frequency, in terms of T . Also estimate (using results from part (c)) the ratio
of the peak magnitude of the first sidelobe in the spectrum of s(t) to the peak magnitude
of the main lobe of its spectrum. [6]
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5 (a) The Discrete Fourier Transform (DFT) of a sampled signal xn, which is N
samples long, is given by:

Xm =
N−1

∑
n=0

xn exp
(
− j 2π mn

N

)
for m = 0 to N−1.

(i) If the sampling period is 100 µs, explain which frequency component of the
signal x is measured by Xm, and show that the spectrum X is periodic. [6]

(ii) If N = 6 and x = {0, 1, 1, 0, − 1, − 1} , calculate the 6 frequency
components, X0 . . . X5 , and sketch the magnitude of this spectrum. Explain
why only some of these components are non-zero and why the spectrum is purely
imaginary. [6]

(b) An analogue-to-digital converter converts a continuous audio signal within the
range −1 V to +1 V into n-bit sampled values.

(i) Derive an expression for the rms quantising noise voltage as a function of n,
listing your assumptions, and hence calculate the number of bits per sample needed
in the converter to keep the noise below 1 mV rms. [6]

(ii) Giving reasons, estimate what transmission bit rate is then required if the
input audio signal has a bandwidth of 20 kHz. You should allow for practical
implementation of anti-aliasing filters. [4]

(iii) If additionally a block code, with 5 parity check bits for each block of 10
source data bits, is used to encode this audio data, what will be the new transmission
bit rate and why is such coding likely to be beneficial on typical communication
channels? [3]
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6 (a) Compare the relative merits of amplitude modulation (AM, including its two
main variants, DSB-SC and SSB-SC) and frequency modulation (FM) for transmitting
signals over bandlimited channels. [6]

(b) Explain the concept of pulse amplitude modulation (PAM) for digital signals and
outline the desirable properties for the modulating pulse p(t) to produce signals that are
suitable for bandlimited baseband channels and are also simple to demodulate and detect.

[5]

(c) Show mathematically how symbols Xk, drawn from a complex constellation, may
be modulated onto a pair of quadrature carrier wave components at frequency fc Hz.
Illustrate your answer using the square constellation for 16-symbol quadrature amplitude
modulation (16-QAM). [5]

(d) Give the rule for optimum detection from the received complex signal samples at
time k

Yk = Xk +Nk

where the Nk are additive Gaussian noise samples. Assume that each Xk is chosen from a
set of M valid constellation symbols by groups of equiprobable data bits. On a sketch of
the 16-QAM constellation show the regions of Yk which decode to each valid Xk. [4]

(e) For a given p(t) and symbol rate, comment on how the data bit rate and the
probability of bit error are likely to vary with the number of symbol states M, assuming
that the mean energy per symbol remains constant. [5]

END OF PAPER
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Part IB Paper 6 2015 Answers:

1 (a) 0≤ kp < 0.07

(b) a = 1, b = 0.4, c = 0.5, d = 0.1, k = 10, n =−2

(c) Phase margin ' 29◦ (at ω ' 4 rad s−1)

2 (a) –

(b) (i) 0≤ kp < 5

(ii) kp = 2.17

(iii) y(t) = 1.25cos(2.5t−2.58)

(iv) ω < 0.68 rad s−1; ω ' 2.4 rad s−1

3 (a)
v̄(s)

v̄d(s)
=

kpkG(1+ sτ + k)
(1+ sτ)(λ + sM)+ kpkG(1+ sτ + k)

(b) k ≤ 1.09; steady state speed error = 0.14 m s−1

(c) Closed-loop damping ratio = 0.68; steady state speed error = 0.098 m s−1

(d) –

4 (a) P(ω−ω0); standard frequency shift result

(b) –

(c) Q(ω) = T{2, 16
3π

, 1, 16
15π

, 0, −16
105π

, 0}

(d) 2
T Hz; 0.0243 (or −32.3 dB)

5 (a) (i) m
N . 104 Hz; Xm+N = Xm

(ii) X = {0, −2 j
√

3, 0, 0, 0, 2 j
√

3}

(b) (i) RMS noise = 2−n
√

3
volt; n = 10 bits per sample

(ii) 440 kbit s−1, allowing +10% for practical filters

(iii) 660 kbit s−1

1



6 (a) –

(b) –

(c) x(t) = ∑
k

p(t− kT ){Re[Xk]cos(2π fct)− Im[Xk]sin(2π fct)}

(d) –

(e) Bit rate ∝ m = log2 M (slowly gets better as M increases)
Distance between samples ∝

1√
M

(The voltage SNR is proportional to this, so the error probability rapidly gets worse as M
increases.)

2


