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 ENGINEERING TRIPOS       PART IIA 

 

 

 Wednesday 22
 
April 2015         9.30 to 12.30 

 

 

 Module 3A1 

 

 FLUID MECHANICS I 

 

 Answer not more than five questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

  

 Write your candidate number not your name on the cover sheet. 

 

 STATIONERY REQUIREMENTS 

 Single sided script paper 

 

 SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

 CUED approved calculator allowed. 

Attachments: 3A1 Data Sheet for Applications to External Flows (2 pages); 

Boundary Layer Data Card (1 page); Incompressible Flow Data Card (2 pages). 

Engineering Data Book 

 

 

10 minutes reading time is allowed for this paper. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 
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1  (a)  A two-dimensional point vortex has circulation    and is located at x = x0 

and y = y0 . What are the Cartesian components of the flow velocity at the general 

position (x,y) ? 

[20%] 

 

(b) The vortex now moves with constant speed U  in the negative x direction. 

 

 (i) By considering the flow in a frame of reference fixed relative to the vortex, 

derive an expression for the magnitude of the external force that must be applied 

to the vortex to maintain its motion. Define any additional variables that you 

introduce. 

 

 (ii) A free-vortex experiences no external force. What value of U  does this 

imply? 

[30%] 

 

(c) The two-dimensional “vortex street” wake formed behind a bluff body can be 

modelled by two rows of free point vortices as shown in Fig.1. Each vortex has 

circulation of magnitude   ; its direction is anti-clockwise in the lower row and 

clockwise in the upper. The fluid far from the vortex street is at rest. 

 

 (i) Without performing any calculations, state the direction in which the 

vortices move. 

  

 (ii) Using the result 

 

 

  

 or otherwise, find the speed of one of the vortex rows. Why does this represent a 

lower bound for the speed of the body producing the wake? 

  

 (iii) With reference to another part of the flowfield, discuss the likely true value 

of the body’s speed – and compare it with your answer from Part (c,ii). 

[50%] 

 
Fig.1 
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2  (a)  Figure 2 shows three possible potential flows around a two-dimensional 

airfoil. Which one represents the flow that would be observed in practice? Explain your 

answer. 

[25%] 

 
 

  

Fig.2 

 

(b) The relation 

 

 

with k > 1 and 0 <  < 1, defines a mapping from the complex z-plane to the complex -

plane. In particular, a circle of radius a centred at the origin of the z-plane is 

transformed into a symmetrical airfoil in the  -plane, with its chord on the Re () axis. 

What is the chord length? 

 [25%] 

(c) A flow around the z-plane cylinder has free stream velocity U , incidence   and 

circulation  . Its complex potential is given by 

 

 

(i) Explain how this result can be used to deduce the complex potential for 

the flow at incidence   around the airfoil in the –plane. 

(ii) What value of  must be chosen to produce a –plane flow matching 

your choice from Part (a). 

[25%] 

(d)  What is the lift coefficient of the airfoil at incidence  ? 

[25%] 

 

(TURN OVER 

  

 =
(𝑧 − 𝑎)𝑘

(𝑧 − 𝑎)𝑘−1
 

F (z) =U z 𝑒−𝑖 + 𝑈
𝑎2

𝑧
𝑒𝑖 −

𝑖

2
ln 𝑧 
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3 (a) (i) State Kelvin’s theorem; take care to specify the conditions under which it 

applies. 

 (ii) Explain why the theorem implies that the component of vorticity parallel to 

a fluid filament of length l is proportional to l . 

[20%] 

 

(b) A pipe flow undergoes a smooth contraction from an initial radius R1 to a final 

radius R2 as shown in Fig.3. The fluid is incompressible and may be assumed inviscid 

over the length of the contraction. The velocity field upstream is axisymmetric with 

profile 

 

 

Downstream the flow is again axisymmetric with 

 

 

 

 (i) What is the vorticity vector at each location? 

 (ii) A streamline originating upstream at r = r1 is found at r = r2 downstream. 

How is the vorticity at these points linked? Hence derive a relationship for k in 

terms of R1 and R2 and find an expression for U2/U1 . 

[60%] 

 

(c) Discuss qualitatively, using sketches, how the velocity profile would develop 

further downstream from the contraction. 

[20%] 

 

 
 

 

 

Fig.3 

 

  

𝑢1(𝑟) = 𝑈1 (1 −
𝑟2

𝑅1
2) 

𝑢2(𝑟) = 𝑈2 (1 − 𝑘
𝑟2

𝑅2
2) 



Version 2.1 

Page 5 of 10 
 

4 A flat plate at zero angle of attack has a constant free stream velocity U and x 

denotes the distance from the leading edge of the plate. 

 

(a) Assume the velocity profile within the boundary layer is given by 

 

 

 

where  is the boundary layer thickness. Derive an expression for the momentum 

thickness   and use the momentum integral equation to deduce how   varies with x . 

[20%] 

(b) Now assume the velocity profile within the boundary layer is given by 

 

 

 

Again, derive an expression for the momentum thickness   and use the momentum 

integral equation to deduce how   varies with x . 

[20%] 

(c) The exact solution of the laminar boundary layer equation within this layer is the 

solution of the Blasius equation 

 

 

with the boundary conditions 

 

 

The solution has the velocity profile 

 

 

 

Show that the corresponding momentum thickness satisfies 

 

 

 

You may use the fact:    f ()(1 – f 
 
()) = 0 . 

[30%] 

 

(d) Compare the approximate   in Parts (a) and (b) with the exact solution from (c) 

and calculate the relative errors. You may use the fact that:   f 
 

(0) = 0.4696 . 

[10%] 

 

(e) Which of the two assumed velocity profiles in Parts (a) and (b) is in fact not 

consistent with the assumed constant free stream velocity? 

[20%] 

(TURN OVER 

𝑢

𝑈
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𝑦


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𝑦


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𝑦
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𝑓′′′ + 𝑓𝑓′′ = 0 

𝑓(0) =  𝑓 (0) = 0 ,  𝑓 () = 1, 𝑓′′() = 0 

𝑢(𝑥, 𝑦)

𝑈
= 𝑓 () ,   = 𝑦√

𝑈

 𝑥
 

√
𝑈

 𝑥
= 𝑓 (0) 
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5  Consider the linear velocity field 

 

   u = Bx , v =  By 

 

in the plane y  0, where B is a positive constant. It describes an inviscid two-

dimensional flow towards a stagnation point. An exact similarity solution of the Navier-

Stokes equations can be found which: (i) satisfies the no-slip boundary conditions at the 

stationary, rigid boundary, y = 0 ; and (ii) takes the inviscid solution as the asymptotic 

solution far from the boundary; see Fig.4. Now, consider a stream function of the form 

 

    = B x f (y)          

 

where f  is a function of y to be determined and f (0) = 0. 

 

(a) If   represents the exact solution of the Navier-Stokes equations which satisfies 

the above two conditions, find the boundary condition for f 

 at y = 0 and also for f (y) as 

y   . 

[20%] 

(b) Substitute   into the y-component of the Navier-Stokes equations and deduce 

that p/y is a function of y only – and hence that 
2
p/xy = 0 . 

[20%] 

(c) Consider now the x-component, deduce that x
-1 
p/x is a constant and use one of 

the boundary conditions to determine this constant. Hence deduce the differential 

equation for f . 

[20%] 

(d) The kinematic viscosity of the fluid is  . What is the proper length scale g and 

velocity scale U  for this flow? 

[20%] 

(e) Use the above length and velocity scales to redefine the stream functions as 

 

    = x F () U 
1/2

 ,  = y / g   . 

 

Deduce the differential equation, as well as the boundary conditions, for F . 

[20%] 

Note: the steady Navier-Stokes equations are: 
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Fig.4 

 

 

 

 

 

6  Consider a thin 2D airfoil with camber line: 

 

   yc = h (x/c) [1 – (x/c)] [a + (x/c)] 

 

where  h , c  and a  are constants. 

 

(a) Using the Data Book relationship between the camber slope and the chordwise 

vorticity distribution calculate the lift and moment coefficients in terms of h , c and a . 

[50%] 

 

(b) Write the expression from Part (a) for the moment coefficient to display the 

moment about the quarter chord point. Describe how this corresponds to experimental 

measurement. 

[25%] 

 

(c) Discuss the physical processes which at high angle of attack lead to differences 

between the analysis and measurement described in Part (b). 

[25%] 

 

 

(TURN OVER 
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7  (a)  Sketch the flow near a finite wing which leads to the formation of a 

“horseshoe” vortex structure. Differentiate clearly between the bound vortex and the 

trailing vortical structures. Which of these structures gives rise to lift – and which to 

drag? 

         [40%] 

 

(b) Using information from the Data Book derive an expression for the spanwise 

variation of downwash. Explain clearly the steps in your derivation. 

[30%] 

(c) Using information from the Data Book derive an expression for the induced drag 

coefficient. Explain clearly the steps in your derivation. Show that elliptically loaded 

wings have the minimum induced drag. 

[30%] 

 

 

 

 

  



Version 2.1 

Page 9 of 10 
 

8 Figure 5 shows the drag behaviour of passenger cars plotted as a function of an 

angle  α . This angle defines a key geometric parameter at the rear of the vehicle. 

 
Fig.5 

 

(a)  Draw a simple sketch showing how this angle is defined.    

[5%] 

(b)  Draw a sketch showing the flow regimes typically seen in regions 1 and 3 as 

marked on the above graph. Briefly explain why there is a difference in drag 

coefficient. For what numerical values of  α  would one typically find the drag 

minimum in region 1 ? 

[40%] 

(c)  In region  2  the drag coefficient is at first seen to rise sharply with increasing 

values of  α . Give physical reasoning for this drag rise and illustrate this with a sketch 

of the flowfield seen near the maximum drag value. 

[20%] 

(d)  Using the above graph, explain the design choices typically made for: 

 (i) small cars; 

 (ii) large cars. 

[20%] 

(e)  If a car is designed to lie in region  3 , what small improvements can be made to 

its basic rear shape to improve the drag behaviour (without changing the overall flow 

domain)? 

 [15%] 

 

END OF PAPER 
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