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 EGT2 

 ENGINEERING TRIPOS       PART IIA 

 

 

 Tuesday 3rd May 2016         9.30 to 12.30 

 

 

 Module 3A1 

 

 FLUID MECHANICS I 

 

 Answer not more than five questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is indicated in 

the right margin. 

  

 Write your candidate number not your name on the cover sheet. 

 

 STATIONERY REQUIREMENTS 

 Single sided script paper 

 

 SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

 CUED approved calculator allowed. 

Attachments: 3A1 Data Sheet for Applications to External Flows (2 pages); Boundary 

Layer Data Card (1 page); Incompressible Flow Data Card (2 pages). 

Engineering Data Book 

 

 

10 minutes reading time is allowed for this paper. 

 

You may not start to read the questions printed on the subsequent pages 

of this question paper until instructed to do so. 
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1 Figure 1 shows a two-dimensional flowfield consisting of two sources, at  (d, 0) , and a sink 

at the origin. The (two-dimensional) volumetric flow rate of each source is  m and that of the sink 

is  km. The fluid is incompressible, and  k is sufficiently large that all the source emissions are 

swallowed by the sink. 

 

(a) What is the minimum value that  k can take? 

[5%] 

(b)  Calculate where are the stagnation points of the flow? 

[10%] 

(c)  Sketch the flow streamlines in the first quadrant (x  0, y  0) for: 

 

(i) k close to its minimum value; 

 

(ii) k large; and 

 

  (iii) k intermediate between the values of (i) and (ii). 

[25%] 

(d) The flowfield is used to model a scheme for removing pollutant discharge from pipes at the 

source locations. 

 

(i) What is the minimum value of  k needed to ensure that no pollutant reaches the 

point (d, 2d) ? 

 

(ii) There are two wedge-shaped regions which remain pollutant-free irrespective of 

distance from the origin. Indicate these regions on a sketch and, for the value of  

k found in (i), calculate their angular extent at the origin. 

[60%] 

 

 
 

Fig.1 

 



 

Version 2.1 

3 of 11 
 

 

2 (a) A three-dimensional source at the origin has volumetric flow rate  m. 

 

(i) Show that the x-direction component of its velocity field on the plane x = d is given by 

 

  
𝑚

4
 

𝑑

(𝑑2+𝑙2)3/2 

 

where  𝑙2 = 𝑦2 + 𝑧2   . 

 

(ii) Write down and evaluate the integral for the volumetric flow rate through the circular 

disc defined by x = d, l  L. 

[30%] 

(b) The flow past a three-dimensional “Rankine oval” is represented by the superposition of: a 

source of volumetric flow rate  m  at  (d, 0, 0); a sink of the same strength at  (d, 0, 0); and a 

uniform flow with velocity  U  in the x-direction. 

 

(i) The upstream stagnation point is at x = (d+s). Find an equation linking the 

dimensionless parameters  m/(d2U) and  s/d. 

  

(ii) The Rankine oval represented by the flow has maximum cross-sectional radius  L. State 

how the flow rate across this section is linked to the source strength  m, and hence, 

using the result of part (a), find an equation relating  m/(d2U) to  L/d. 

[40%] 

(c) For the case where the Rankine oval of part (b) is slender (ie. L/d « 1), find the leading order 

approximation for: 

 

(i) L/d in terms of   m/(d2U) ; 

 

(ii) the “aspect ratio”  L/(d+s) in terms of   m/(d2U) ; 

 

(iii) the minimum surface pressure in terms of the aspect ratio and the free stream flow 

properties. 

[30%] 
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3 (a) The vorticity equation for an incompressible fluid with kinematic viscosity    is 

 

    
𝐷

𝐷𝑡
  = .𝑢 +  2    . 

 

What physical processes are described by the three terms? 

[20%] 

(b) An unsteady, viscous, two-dimensional flow has streamlines that are straight and lie in the x-

direction. 

 

(i) Explain why the x-direction velocity component must be independent of  x. 

 

(ii) Show that, for this flow, the vorticity equation simplifies to 

 

    
 

 𝑡
= 

 2

 𝑦2    . 

 

(iii) Confirm that the vorticity field 

 

     =
𝐴

√𝑡
𝑒−𝑦2/4𝑡 

 

(with  A constant) is a solution of the equation in part (b)(ii) and sketch profiles of   

against  y for a succession of increasing times. (Three will be sufficient and only the 

region  y  0 need be shown.) 

[40%] 

(c) The flow boundary condition is suddenly altered so that there is no shear stress on the plane  

y = 0. 

(i) What does this imply for the vorticity at  y = 0 ? 

 

(ii) Without further analysis, but giving justification on the basis of your answer to part (a), 

sketch the subsequent evolution of the vorticity profile. 

[40%] 
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4 Consider a plane jet emerging into a stationary fluid from a narrow slit in a wall, as shown 

in Fig. 2. The jet spreads at constant pressure and is thin so that the velocity  𝑢 varies much more 

rapidly across the jet than along it. 

 

(a) Apply the arguments of boundary layer theory to deduce an approximate equation for the 

velocity in the jet and state the boundary conditions for the horizontal velocity  u(x, y) assuming 

the jet is symmetrical.  

[15%] 

(b) How does the momentum flux 

 

    𝐽 = ∫ 𝑢2𝑑𝑦
+

−
 

 

evaluated at  x = constant depend on  x.  

[15%] 

(c) Using the stream function 

 

     = 1/2𝑥1/3𝑓()  

 

where   is the kinematic viscosity and   =
𝑦

3 1/2𝑥2/3
 , deduce the equation for  f and state the 

boundary conditions.  

[40%] 

(d) Show that  f  satisfies the equation: 𝑓  +
1

2
𝑓2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  . 

[30%] 

 

 

Fig.2 
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5 Consider turbulent duct and boundary-layer flows for which there are three regions near a 

wall as sketched in Fig. 3. Let u be the mean velocity parallel to the wall, w the wall shear stress 

and  U  the velocity at the edge of the outer layer,  y =  . 

(a)  In a region quite close to the wall (in the viscous wall layer and overlap layer), we are far 

enough away from the outer edge that we may assume the local flow has no information about the 

free-stream velocity  U and the boundary layer thickness   . Express  u as a function of relevant 

variables, and use dimensional analysis to deduce the law of the wall. You may use the friction 

velocity  𝑢∗ = √𝑤 ⁄ .  

[20%] 

(b) The viscosity is important only very close to the wall (in the viscous wall layer). With 

increasing  y (in the overlap layer) the viscosity ceases to play a role long before parameters other 

than those in (a) have an influence. Use dimensional analysis to deduce the logarithmic-law in the 

overlap layer 

    
𝑢

𝑢∗
=

1


𝑙𝑛 (

𝑢∗𝑦


) + 𝐵 

where   and  B are the dimensionless constants.  

[20%] 

(c) Very close to the wall, the wall law is linear. Express this linear viscous relation using the 

friction velocity.  

[10%] 

(d) Assume that the logarithmic-law obtained in (b) correlates the local mean velocity  u(r) of 

a turbulent pipe flow all the way across a circular pipe of radius  R. Deduce an equation between 

the mean velocity  V and the friction velocity  u∗. You may use: 

  ∫ 𝑙𝑛 𝑦 𝑑𝑦 = 𝑦 𝑙𝑛 𝑦 − 𝑦    ;     ∫ 𝑦 ln 𝑦 𝑑𝑦 =
1

2
𝑦2(ln 𝑦) −  

1

4
𝑦2 . 

[30%] 

(e)  Deduce the formula relating the mean velocity to the maximum velocity  umax 

    𝑉 𝑢𝑚𝑎𝑥⁄ = 1 (1 +
3

2
√

𝑓

8
)⁄  

where the Darcy friction factor  f = 8w/(V2). 

[20%] 
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Fig.3 
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6 (a) The camber of a smoothly deformable thin aerofoil is modelled by 

 

     𝑦𝑐 =
ℎ



𝑥

𝑐
(1 −

𝑥

𝑐
) ( −

𝑥

𝑐
) 

 

and is shown in Fig.4 for  = 0.75, 1.0 and 1.5. Show that the first three coefficients in the Fourier 

series for  2dyc/dx are: 

 

     𝑔0 = −
1

4

ℎ

𝑐
 ;  𝑔1 = (2 −

1


)

ℎ

𝑐
 ;  𝑔2 = −

3

4

ℎ

𝑐
 

[40 %] 
 
 
(b) The lift coefficient,  cl , and pitching moment about the quarter chord point,  cm0 , vary with  

. Sketch graphs of  cl() and  cm0(). Explain the behaviour of  cl() and  cm0() with reference to 

the aerofoil shapes sketched in Fig.4. 

   [40%] 

 

(c) The aerofoil is at zero incidence. Calculate the centre of pressure as a function of  . Explain 

the behaviour of the centre of pressure around   = 0.75 and discuss the usefulness of the concept 

of the centre of pressure. 

 

 [20 %] 

 

 

 

 

Fig.4 
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7 The F104 Starfighter shown in Fig.5 has a trapezoidal wing with  cr = 3.75 m,  ct = 1.50 m 

and  s = 3.18 m. Its maximum take-off weight is 120,000 N at a take-off speed of 100 ms-1 in air 

of density 1.2 kgm-3.You may assume that the wing has an elliptic circulation distribution: 

 

              (𝑦) = 0√1 − 𝑦2 𝑠2⁄  

 

(a) Use the substitution  y = s cos   and the Glauert integral to show that the downwash angle 

is uniform and with value  d = 0/(4Us) . 

[20%] 

(b) Calculate  0 at take-off. 

[20%] 

(c) The lifting line equation is: 

 

    
(𝑦)

 𝑈 𝑐(𝑦)
=  − 0(𝑦) − 𝑑(𝑦) 

 

where  (y) is the local circulation,  c(y) is the local chord,  d is the local downwash angle,  0 is 

the local zero lift angle and   is the aircraft angle of attack defined such that  0 = 0 at the wing 

tip,  y = s. Calculate the angle of attack,  , at take-off. Sketch the spanwise distribution of 0 that 

delivers elliptic loading at take-off. 

[40%] 

(d) Assuming that the wing has uniform camber and no twist, sketch the local lift coefficient  

cl(y) for 0  y  s and calculate the value of  y where it is a maximum. For good supersonic 

performance the F104 has a very thin wing (0.4 mm thick at the leading edge). Suggest why this 

aircraft was nicknamed the aluminium death tube by the Canadian Air Force which lost 110 of its 

235 F104s to accidents and discuss possible mechanisms to improve its safety at take-off. 

[20%] 

 

 

 

Fig.5 
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8 (a) Making sensible assumptions, derive from first principles an equation to approximate the 

additional drag caused by the engine cooling system of a vehicle. The engine is cooled through a 

radiator which has mass flow  𝑚̇𝑟  and the vehicle is travelling at speed  V . Explain your 

assumptions. 

[25%]  

(b)  A prototype passenger vehicle travelling at 30 m/s requires a mass flow of 1 kg/s of air 

through its radiator. The vehicle’s reference area is 2.5 m2 and the ambient air density is 1.2 

kg/m3. Estimate the additional drag coefficient due to the radiator air flow. What approximate 

proportion of the overall aerodynamic drag is this? Does it matter where the radiator is located? 

[30%] 

(c)  What is a Gurney flap? Using simple sketches, briefly explain its effect on an aerofoil. 

Where might you find such a device on a vehicle? Why might it be used? 

[45%] 
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