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 EGT2 
 ENGINEERING TRIPOS       PART IIA 
 
 
 Monday 24 April 2017         9.30 to 12.30 
 
 
 Module 3A1 
 
 FLUID MECHANICS I 
 
 Answer not more than five questions. 
 
 All questions carry the same number of marks. 
 

 The approximate percentage of marks allocated to each part of a question is indicated in 
the right margin. 

  
 Write your candidate number not your name on the cover sheet. 

 
 STATIONERY REQUIREMENTS 
 Single sided script paper 
 
 SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
 CUED approved calculator allowed. 

Attachments: 3A1 Data Sheet for Applications to External Flows (2 pages); Boundary 
Layer Data Card (1 page); Incompressible Flow Data Card (2 pages). 
Engineering Data Book 
 
 
10 minutes reading time is allowed for this paper. 
 

You may not start to read the questions printed on the subsequent pages 
of this question paper until instructed to do so.	
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1 In polar coordinates the potential function,  f , for an incompressible flow must satisfy 
 

    
¶	"f
¶#"

+ %
#
¶f
¶#
+ %

#"
¶	"f
¶q"

= 0 . 

 
(a)  Show that the function  f = Ara cos aq , where a is a constant, is a valid potential function. 

[25%] 
 
(b) Show that this function can represent the flow in a corner. Find the angle of the corner. 

[25%] 
 
(c) An inviscid liquid flows downwards between two vertical, parallel plates. An air bubble is 
held stationary on one plate by the flow, as shown in Fig.1. The interface between bubble and liquid 
makes an angle  b with the vertical. Using Bernoulli’s equation, estimate  b. 

[25%] 
 
(d) Calculate  A at this value of  b. Comment on the speed of the flow far upstream; comment 
also on the defects of this model. 

[25%] 
 

 
 

Fig.1 
  



 

Version	1.4	

Page	3	of	10	
	

 
 
2 An inviscid two-dimensional flow with speed  U in the x-direction flows over an infinitely 
long wall at  y = 0. The wall contains a porous section from  x = -L  to  x = +L. Uniform suction is 
applied through the porous section, with volumetric flowrate  V  per unit  x length. 
 
(a) Show that the complex potential for this flow is 
 

    𝐹 𝑧 = 𝑈𝑧 − 	𝑉p 	ln	(𝑧 − 𝑥
1)34

54 𝑑𝑥1 . 
[20%] 

 
(b) Derive an expression for the velocity field and sketch the flow 
 

(i) in the limit |z| >> L ; and 
(ii) in the limit |z| << L . 

[20%] 
 
(c) Find the position of any stagnation points in the flow in terms of  U,  V and  L. 

[20%] 
 
(d) Hence sketch the streamlines of the flow in the domain  y > 0 and  |z| ~ L. 

[20%] 
 
(e) Without further calculations, sketch the streamlines when the fluid is viscous. Explain the 
features of your sketch, particularly for |z| << L . 

[20%] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(TURN OVER 
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3 (a) The complex potential for a flow is  F(z) = U (z -aeikz) . Derive the streamfunction for this 
flow.  

[20%] 
(b) Hence, or otherwise, show that this represents the inviscid, irrotational flow across a 
corrugated surface at position  y = a sin kx , as long as  ka << 1. 

[30%] 
 
(c) Inviscid fluid flows between a flat plate at  y = 0 and a corrugated surface at y = -d + a sin kx 
where  ka << 1 but  kd is not small; the flow speed is  U at  x = 0 and  y = 0. Derive the streamfunction 
for this flow by superposition, or otherwise, and hence derive an expression for the difference 
between the maximum and minimum velocity in this flow. 

[50%]  
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4 (a) As defined on the data sheet, the incidence and camber solutions of thin aerofoil theory 
correspond to a vortex sheet of strength 
 

   g	 𝑦 = 	−𝑈 2a+ 𝑔:
1−cosf
sinf + 𝑔@ sin 𝑛f¥

@B%  . 

 
Explain why this expression implies a specific “design” incidence with minimal drag and give an 
expression for this angle. 

[20%] 
 
(b) A thin aerofoil with chord c has a camber line given by 
 

    
CD
E
= 𝑌 G

E

H
− 3

G
E

J
+ 2

G
E

 

 
where  Y is a positive constant. 
 
 (i)  Find the design incidence of the aerofoil. 
 (ii)  Sketch the pressure distribution at this incidence using as axes (-cp) and x/c . 
 (iii) On separate sketches, show the pressure distributions at zero incidence and at twice 

the design incidence. 
[60%] 

 
(c) Your sketches for Part (b) apply to an aerofoil of zero thickness. Describe, annotating your 
sketches accordingly, how thickness modifies the pressure distributions, and discuss its 
aerodynamic merit. 

[20%] 
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5 In Lifting Line theory a wing of semi-span  s in a flow with free-stream velocity  U is 
represented by a bound circulation  G  that varies with spanwise location  y.  

(a) If the wing has symmetrical aerofoil sections, the local lift coefficient at incidence  a is 
given by 

    𝑐L 𝑦 = 2p	 a+ aM(𝑦) − aN(𝑦)  

where  at and  ad  are, respectively, the twist and downwash angles. Explain, with the aid of a 
diagram, the derivation of this equation. 

[20%] 

(b) At its intended design point, a wing has bound circulation  G(y) given by 

    
G
OP

= 𝐺1 sin	q + 𝑎	sin	3q  

in which  G1 and  a are positive constants and  q  defines spanwise position via  y = -s cos q . What 
is the local downwash angle as a function of  q ? 

[50%] 

(c) The wing in Part (b) is to have symmetrical aerofoil sections and a spanwise uniform lift 
coefficient  cld at its design point. What twist distribution (relative to the section at mid-span) and 
chord variation are required? Give your answers as functions of  q and sketch their approximate 
dependence on  y with curves for  a = 0 as comparators. 

[30%] 
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6 Consider a two-dimensional high Reynolds number flow around an expansion corner with 
turning angle  ap , as shown in Fig.2. 

(a) Use complex potential flow theory to find an inviscid solution for the flow around the corner 
such that the velocity at the wall is of power-law type  U = kxm. Determine  m in terms of  a. 

[20%] 

(b) A boundary layer develops from the origin. Consider a similarity solution to that boundary 
layer of the form 

    y 𝑥, 𝑦 = 𝐹 𝑥 	𝑓 h 						with      h = 𝑦/𝑔(𝑥) 
 
where  y  denotes the streamfunction. Assume  df /dh (¥) = 1  and hence show that  

   y = U(x) g(x) f (h).           
[10%] 

(c) Write down the laminar boundary layer equations and calculate expressions for  u,  v,  ¶u/¶x,  
¶v/¶y and  ¶2u/¶y2. 

[20%] 

(d) Substitute the above expressions into the boundary layer equations to derive a differential 
equation relating  f  and  g. 

[20%] 

(e) Find the necessary conditions for the existence of a similarity solution and hence deduce 
the differential equation for  f  in the simplest form. 

[20%] 

(f) Discuss the physical validity of the solution found.                                                              [10%] 
 

 

 
 

                                                                          Fig.2                                                (TURN OVER 
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7 Consider the boundary layer equations for the flow past a flat plate: 
 

           u	¶𝑢¶𝑥 	+ 𝑣
¶𝑢
¶𝑦 	= 	−

1
r
¶𝑝
¶𝑥 +

1
r
¶t
¶𝑦							 ; 				

¶𝑢
¶𝑥 	+	

¶𝑣
¶𝑦 		= 0 . 

 
(a) Show that 
 

 
¶
¶G

𝑢 𝑈 − 𝑢 + 	
¶
¶C

𝑣 𝑈 − 𝑢 + 𝑈 − 𝑢
ZO
ZG

		 = 	 −
%
r
¶t
¶C

 

 
where  U = U(x) is the external flow over the plate. 

[30%] 
(b) Integrate the equation in Part (a) from the plate wall to infinity to derive the von Karman 
momentum integral equation. 

[20%] 
(c) Assume that the external flow  U  is uniform. Consider the velocity profile 
 

 𝑢 = 𝑈 sin p𝑦
2d 			for	𝑦 < 	d	,												𝑢 = 𝑈				for	𝑦	³	d 

 
where  d  is the boundary layer thickness, assumed to be zero at  x = 0. Find the momentum 
thickness q in terms of  x,  U and the kinematic viscosity  u.   

[30%] 
(d) It is observed that this sine-wave profile gives much better accuracy than the parabolic 
profile 
 

 𝑢 = 𝑈	 2 𝑦
d −	 𝑦d

J
  . 

 
Explain this observation in terms of the boundary conditions implied by these profiles. 

[20%] 
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8 A race car has an underbody diffuser with planform area  A and with pressure recovery  Cp. 
It is fed by flow from upstream as shown in Fig.3 with a core flow with wake deficits on either 
side. 
 
(a) Derive an expression for the downforce generated by the diffuser. You may assume the 
whole area  A  experiences the recovered flow.                                                                               

[30%] 
 

(b) If now the underbody flow mixes out to be uniform before arriving at the diffuser derive a 
new expression for the downforce. Assume no flow enters or leaves around the floor edge. 

[30%] 
 

(c) What is the relative magnitude of the two downforce values. Comment on the difference. 
[25%] 

(d) How might the non-uniform flow be maintained in practice.                                        
[15%] 

 
 

 
Fig.3 

 
 
 
 

END OF PAPER 
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