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 Module 3A5 

 

 THERMODYNAMICS AND POWER GENERATION 

 

 Answer not more than three questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Engineering Data Book  

 

 

10 minutes reading time is allowed for this paper. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 
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1 (a) An adiabatic, steady-flow combustion chamber is supplied with methane 

(CH4) and excess air, both at temperature T1. Combustion is complete and the products 

leave the chamber at temperature T2. It may be assumed that 1 mole of air consists of 

0.21 moles of oxygen and 0.79 moles of nitrogen, and that all species behave as perfect 

gases with the same isobaric molar heat capacity pc . Prove that, 
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where F is the molar ratio of air (not O2) to methane, and 
0

1TH  is the standard molar 

enthalpy change of reaction at temperature T1 for the methane combustion reaction, 
 

                                                CH4 + 2O2    CO2 + 2H2O [25%] 

 

(b) Derive an expression for the entropy created within the combustion chamber per 

mole of methane supplied in terms of pc , T1, T2, F and 0

1TS  the standard molar entropy 

change of reaction at temperature T1. It may be assumed that the combustor operates at 

standard pressure (p0 = 1 bar) and that the chemical species CH4, O2, N2, CO2 and H2O 

are each supplied or withdrawn separately at standard pressure. [30%] 

 

(c) For a gas-phase reaction where all species behave as ideal gases, van ’t Hoff’s 

equation can be written, 
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where Kp is the equilibrium constant. If, for a particular reaction, 
0

TH  is independent 

of temperature, prove that the standard molar entropy change of reaction 
0

TS  is also 

independent of temperature. [20%] 

 

(d) In a particular application the combustor forms part of a power plant. The inlet 

and outlet combustor temperatures are T1 = 800 K and T2 = 1750 K, and a suitable 

average value for pc  is 30.0 kJ kmol1K1. The reactants are supplied to the power plant 

at T0 = 25 C and, for the methane combustion reaction, 0

0TG = −800.8 MJ kmol−1  and 
0

0TH = −802.3 MJ kmol−1. Using the assumptions, approximations and results from 

parts (a), (b) and (c) above, and taking the dead state temperature as 25 C, calculate the 

maximum rational efficiency of the plant assuming the only irreversibility is that 

associated with the combustor. [25%] 
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2 The Dieterici equation of state of an imperfect gas is, 
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where p is the pressure, T is the absolute temperature, v is the specific volume, R is the 

specific gas constant, and a and b are constants. 
 

(a) Write down two mathematical conditions at the critical point that must be satisfied 

by the isotherm passing through that point. [10%] 
 

(b) Apply these conditions to show that, for Dieterici’s equation, the critical pressure, 

temperature and specific volume, Cp , CT  and Cv , are related by, 
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(c) Using a scaling based on the critical properties, derive a universal or 

‘corresponding states’ form for Dieterici’s equation of state.   [15%] 
  

(d) State the three conditions that must be satisfied by the liquid and vapour phases of 

a pure substance coexisting at thermodynamic equilibrium. Show that one of these 

conditions is equivalent to the statement, 
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where f and g stand for the wet saturated liquid and dry saturated vapour states, 

respectively. Hence, show that, 
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where psat(T) is the saturated vapour pressure at temperature T. [25%] 
 

(e) Interpret the second equation of part (d) graphically with reference to a sketch of 

the p-v diagram for Dieterici’s equation of state. [15%] 
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3 Where necessary, use the properties of steam given in Table 1 on the next page. 

 

(a) Explain how feedheating can be used to raise the efficiency of a steam cycle. 

     [10%] 

(b) A temperature-entropy diagram for a steam cycle, with reheat, is shown in 

Fig. 1(a). The condenser pressure is 0.04 bar and the flow leaves the condenser as 

saturated liquid. The boiler pressure is 150 bar and the reheat pressure is 40 bar. Steam 

leaving both the boiler and the reheater is superheated to 550 °C. Both turbines may be 

modelled as isentropic and the feed pump work neglected. Stating any other 

assumptions, evaluate the maximum possible cycle efficiency for the following 

configurations: 
 

 (i) without feedheating, 
 

 (ii) with feedheating using steam bled from the turbine after the reheater. [35%]  

 

(c) Two direct-contact feedheaters are fitted to the cycle, as indicated in Fig. 1(b). The 

feedheaters extract fractions x and y  (of the mass flowrate of steam leaving the reheater) 

from the turbine at pressures of 20 bar and 5 bar respectively. In each case, the flow 

leaving the feedheater is saturated liquid. Stating any assumptions made, evaluate the 

efficiency of the cycle.  [35%] 

 

(d) Describe an undesirable consequence of feedheating on the temperature of the 

exhaust flue gas leaving the boiler. What feature can be added to the plant to mitigate 

this?     [20%] 

 

 

 

 

(cont. 
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Figure 1 

 

 

 

 

 
 

State 4 h = 3060 kJ kg−1 

State 6 h = 2180 kJ kg−1 

State 6a h = 3330 kJ kg−1 

State 6b h = 2950 kJ kg−1 

 

Table 1 
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4 (a) Explain why polytropic efficiency is often preferred to isentropic efficiency 

for the performance analysis of compressors and turbines. [15%] 

 

(b) A semi-perfect gas is expanded, with polytropic efficiency η, from state 1 to state 

2, in a turbine. Show that, 
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where  R  is the specific gas constant and cp(T) is the specific heat capacity at constant 

pressure.    [20%] 

 

(c) Air at 45 bar and 1800 K enters a turbine where it is expanded with a polytropic 

efficiency of 0.90. The flow leaves the turbine at a pressure of 1 bar. The air may be 

assumed to be semi-perfect with R = 0.287 kJ kg−1 K−1  and, 
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where cp0 = 1.010 kJ kg−1 K−1, T0 = 298.15 K and n = 0.12. Evaluate: 
 

 (i) the specific work output from the turbine; [30%] 
 

 (ii) the isentropic efficiency of the turbine.  [15%] 

 

(d) Compare the role of aero-derivative gas turbines to gas turbines typically used in 

combined cycle plants. Describe two modifications to the aero-derivative cycle that can 

be used to raise cycle efficiency.  [20%] 

 

 

 

 

END OF PAPER 
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ANSWERS 
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 (e) The equal-area ‘Maxwell construction’ ensuring that gf = gg . 
 

3. (b) (i) 0.460 

  (ii) 0.542 

 (c) 0.503 
 

4. (c) (i) 1214 kJ kg−1 

  (ii) 0.937   

 

 

J.B. Young & G. Pullan 
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