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EGT2
ENGINEERING TRIPOS PART IIA

Friday 1 May 2015 9.30 to 11

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A flammable gas sensor consists of a porous diffusion layer of thickness δ over a
heated catalytic plate (Fig. 1). A gas stream with a molar bulk concentration cb of the
flammable species flows over the surface of the sensor, where the concentration is cs.
The species diffuses through the layer onto a heated plate, where it reacts exothermically,
leading to a temperature rise, which is measured. The mass convection coefficient over
the sensor is hm, and the diffusion coefficient of the species through the porous layer is
D. The rate of reaction at the plate is Ω = Acc, where A is a constant, and cc is the molar
concentration at the catalyst surface.

(a) Consider the device in steady state operation.

(i) Obtain an expression for the concentrations cc and cs, as a function of the
bulk gas concentration and the parameters given. [30%]

(ii) Show that the molar flux through the sensor reduces to j = Acb at the limit of

low reaction rate, and to j = cb
1

1/hm +δ/D
at the limit of high reaction rate. [25%]

(b) Consider the device operating under a sudden change in concentration, and at the
limit of high reaction rate, as described in part (a)(ii). The boundary conditions are
c(δ , t) = cs1 and c(0, t) = 0 for t > 0, and the initial concentrations are zero throughout
the domain.

(i) Estimate the response time of the sensor, as the time for the reactant to get to
the wall at x = 0, as a function of the parameters given. [15%]

(ii) Show by substitution that the solution for the concentration profile through
the layer and the boundary conditions are satisfied by equations of the form: [20%]

c =Cn exp(−k2
nD/δ

2t)sin(knx/δ )

(iii) Explain what are allowable values for kn. [10%]

Page 2 of 8



Version SH/3

x

�
cs

cb

cccatalyst 
porous 
layer 

Fig. 1

Page 3 of 8 (TURN OVER



Version SH/3

2 A finned heat exchanger is formed by stacking flow channels of height H, width
W , length L , and wall thickness δ , as shown in Fig. 2(a). The inlet temperature of the
hot air is Th,i , and the outlet temperature is Th,o . The air mass flow rate is ṁ, and the
specific heat at constant pressure, cp . The conductivity of the solid surfaces is λ . The
operation is in steady state, and the flow can be considered fully developed throughout,
with a constant heat transfer coefficient, h , for all surfaces. The number of channels is
large, so that the analysis can be done for a unit element consisting of a half channel about
the symmetry axis of the channel walls, as shown Fig. 2(b). Heat transfer to the end walls
can be neglected. The temperature of the surface at the mid-point between stacks is Ts,
and the temperature gradients at all symmetry planes are zero.

(a) Consider the analysis of the unit element defined in Fig. 2(b). Ignoring the fins,
show that the total heat transfer from the air to a surface of area WL to the symmetry
plane at a fixed temperature Ts within the heat exchanger is given by q = UWLθ , where

θ =
(Th,o −Th,i)

ln[(Th,o −Ts)/(Th,i −Ts)]
, and U is the overall heat transfer coefficient. Determine

U as a function of the parameters given. [30%]

(b) Considering the additional transfer by the vertical fins, determine the total heat
transfer to the unit element in terms of the geometric parameters (W , δ , H and
L), θ and flow properties. Assume that the fin effectiveness, defined as the ratio
of the actual heat transfer to that of a surface at a uniform base temperature, is
given as η = [tanh(m L f )]/(m L f ) for an adiabatic tip, where L f is the fin length,

m =
√

hPf /(λAc), Ac is the cross-sectional area of the fin, and Pf its perimeter. [30%]

(c) Determine the overall heat transfer for a system consisting of N rectangular
channels, neglecting end effects. [10%]

(d) Consider now an assembly with rows of stacks of identical air units in cross flow,
organised so that the surfaces line up at the stack symmetry planes, with a heat exchange
area W 2. Show that the temperature rise ∆T of the cold and hot sides across the unit are
equal and opposite, and obtain an expression for ∆T as a function of the geometric and
operational parameters given. [30%]
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3 A flow velocity sensor works by placing a heated film aligned with a
one-dimensional flow with free stream velocity U , and measuring the necessary rate of
heat transfer to the film required to maintain it at a given temperature, as shown in Fig. 3.
The film surface, of length 0.005 m along the flow, is maintained at a higher temperature
than the free stream, via a feedback circuit. The local Nusselt number over the surface of
the film is assumed to be given by one of the following correlations, which are valid for
flow over flat plates:

Nux = 0.332 Pr1/3Re1/2
x laminar flow, Rex < 10,000

Nux = 0.0385 Pr1/3Re4/5
x turbulent flow, Rex ≥ 10,000

(a) Obtain an expression for the mean Nusselt number over a length L , NuL =
hL
λ

, for
the two flow regimes, as a function of Pr and ReL. [15%]

(b) Determine the local ReL, NuL and mean NuL numbers for the sensor length L, for
the cases on the table below. Be mindful of the turbulent transition. [35%]

Property Case
A B C D

U (m/s) 0.1 10 0.1 10
Fluid air water

ν (m2/s) 1.47×10−5 1.15×10−6

Pr (-) 0.7 8.12

(c) Sketch the evolution of the thermal and velocity boundary layer thicknesses in the
region 0< x<L for cases A-D, justifying the relative magnitudes and highlighting notable
features. [20%]

(d) Estimate the uncertainty in velocity measurement ∆U/U for a given mean heat
flux measurement uncertainty, ∆q/q. Discuss what determines the relative measurement
accuracy. [15%]

(e) Are the thin boundary layer approximations valid under conditions A-D? What
alternatives could be used to relate the heat flux and flow velocity for different sensor
geometries? [15%]
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4 A solid slab of material with thermal conductivity λ has the quarter cylindrical cross
section of radius R indicated in Fig. 4. The material generates heat at a rate of ġ per unit
volume.

(a) Provide a sketch and derive the steady state energy conservation equation in terms
of the temperature T of the material, for a cylindrical differential element dr× r dθ ×dz.

[30%]

(b) Assuming that the slab is semi-infinite in the z direction, with negligible temperature
gradients in z and θ , that the slab is perfectly insulated at θ = 0 and θ = π/2, and
cooled at the outer boundary, subject to a convection coefficient h and a surrounding
fluid temperature T∞ , show that the solution to the temperature field is given by: [30%]

T = T∞ +
ġR
2h

+
ġR2

4λ
(1− r2

R2 )

(c) Now assume that the boundary conditions at all three walls are convective, with the
same convection coefficient h and a surrounding fluid temperature T∞ . Provide a sketch
and discretise the governing equation in cylindrical coordinates for internal points, using
second order central differencing. [20%]

(d) Provide the discretised equations for external points along the three external walls.
Discuss how the system can be organised in matrices to obtain a solution in a grid with N
radial and M angular grid points. [20%]

✓

R
r

Fig. 4

END OF PAPER
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Answers

1.

(a)(i) cb − cc = Acc(
1

hm
+

δ

D
)

cs = cb
1/A+δ/D

1/A+1/hm +δ/D
(a)(ii) -
(b)(i) τ = δ 2/D
(b)(ii) -
(b)(iii) kn = π(n+1/2)

2.
(a) 1/U = 1/h+(δ/2)/λ

(b) qu =UWLθl [1+
δ

L
(η −1)], L f = H/2, m =

√
2h/λδ

(c) Q = 2Nqu

(d) ∆Th =−∆Tc

∆(Th −Tc) =−U
2

W 2[1+
δ

L
(η −1)](Th −Tc)

4.
(a) For the laminar case,

NuL,l = (2)0.332Pr1/3Re1/2
L

For the turbulent case,

NuL,t =
5
4

0.0385Pr1/3Re4/5
L

Considering the transition at `

NuL =
hLL
λ

=
Nu`,l

m
+

NuL,t
m′ −

Nu`,t
m′

(b)

Air Water
Case A B C D
U (m/s) 1 10 1 10
ReL (-) 34 3401 435 43478
NuL 1.7 17.2 13.9 397 (t)
Nu`,t 123
Nu`,l 66.7
NuL 3.4 34 28 477
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(c)
∆U
U

= 1
m

∆q
q

, where m = 1/2 for laminar and m = 4/5 for turbulent.

(d) -
5.

(a) -
(b) -
(c) -
(d) -
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