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EGT2
ENGINEERING TRIPOS PART IIA

Friday 28 April 2017 9.30 to 11

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Two rooms containing hot and cold gases at temperatures Th > Tc are separated by
a wall of thickness L, height H and width W (Fig. 1). The pressure in each room is
hydrostatic, with gravity acceleration g as noted. The mean pressure is the same on either
side of the wall. Gaps of height D� H on top and bottom allow flow in either direction.

Assume that the bulk velocity across the gaps is given by Ub =
D2

12
∆p
ρνL

, where ρ is

the mean density within the channel, ν the kinematic viscosity, and ∆p the pressure
difference across the channel.

(a) Determine the pressure difference across the top and bottom gaps, and show that

the mass flow rate ṁ leaking across each channel is equal to: ṁ = (ρc − ρh)
gD3W H

24νL
. [20%]

(b) Starting from the governing equations for the vertical thermal boundary layer below,
featuring a volumetric expansion coefficient β, and thermal diffusivity α, apply a scaling
analysis to estimate the mass flow rate induced by natural convection, as follows:

Mass:
∂u
∂x
+
∂v

∂ y
= 0

Vertical momentum: u
∂v

∂x
+ v

∂v

∂ y
= ν

∂2v

∂x2 + g β(T −T∞)

Energy: u
∂T
∂x
+ v

∂T
∂ y
= α

∂2T
∂x2

(i) Sketch the velocity and temperature profiles along the wall for the cold and
hot sides: which way does the air flow? [10%]

(ii) Using mass and energy conservation equations, estimate the vertical velocity
v induced by natural convection as a function of the thermal boundary layer
thickness δT , the height H and the thermal diffusivity, α. [20%]

(iii) Assuming that the leading terms in the vertical momentum equation are
friction and buoyancy, show that: [25%]

δT

H
∼

(
αν

gH3 β(Th −Tc)

)1/4

(c) Using the estimates of v and δT , determine the ratio of the estimated mass flow
rates induced by natural convection compared to those generated by leakage in part (a). [25%]
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Fig. 1
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2 A two-dimensional mass exchange channel of length L (Fig. 2) selectively extracts
a species from a dilute mixture flowing through channel A into the lower concentration
stream B, via a porous membrane through which only the species of interest is allowed
to cross. The species flow resistance of the membrane is negligible. Both mass fractions
YA and YB are sufficiently low that the overall mass flow rates per unit width ṁA and
ṁB , and the density of both streams, ρ , remain unchanged. The convective mass transfer
coefficients per unit area for each side of the channel are hA and hB respectively, in units
of length per unit time. The boundary conditions for the concentrations are YA(0) = YA0,
YA(L) = 0.5 YA0 and YB (L) = 0, and we define the ratio β = ṁA/ṁB.

ṁA

ṁBx

L

Fig. 2

(a) Starting from a differential element along x, derive an expression for the local
species mass flux , j , across the membrane, as a function of ∆Y = (YA−YB) , density,
and mass convection coefficients. [10%]

(b) Show that the total flow rate of the species of interest across the membrane per unit
width, J =

∫ L
0 j dx is given as:

J = ρUL
∆Y (0)−∆Y (L)

ln [∆Y (0)/∆Y (L)]

where U =
[

1
hA
+

1
hB

]−1
. [30%]

(c) Obtain an expression for J/(ρUL) for the boundary conditions given, as a function
of β and YA0 . [25%]

(d) Obtain an expression for j/(ρU) as a function of x/L , ρUL/ṁA , YA0 and β . [15%]

(e) Sketch j, YA and YB as a function of x/L, for 0 < β < 1, and identify any relevant
features. [20%]
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3 (a) Starting from a differential cylindrical element r dr dθ in a solid material,
derive the two-dimensional energy conservation equation, where heat is transferred by
conduction and generated at a rate ġ per unit volume :

∂T
∂t
= α∇2T +

ġ

ρc

The material has thermal diffusivity α , density ρ and specific heat c . Include a sketch
of the differential elements and all steps in your derivation. [30%]

(b) For a cylindrical coordinate system, in which ġ = 0, determine what condition or
conditions functions f (t) and β(t) must obey in order to satisfy energy conservation for
the following temperature field: [30%]

T (r, t) = f (t) exp(−β(t)r2)

(c) For the temperature field:

T (r, t) =
A
αt

exp
(
−

r2

4αt

)
(i) Sketch the temperature field contours, and the corresponding heat flux lines
for a given time t. [10%]

(ii) Sketch the temperature profile as a function of distance r and time t . [10%]

(iii) Show by integration that the energy in the entire field is conserved, and
interpret the constant A. [20%]
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Fig. 3

4 Two identical rectangular parallel plates, represented as surfaces 1 and 2 in Fig.
3, are separated by a semi-transparent window m of the same dimensions, placed at
the mid-point between plates 1 and 2. Surfaces 1 and 2 are opaque, with emissivities
ε1 = 0.8 and ε2 = 0.7, and all surfaces can be considered diffuse. The view factors for
the rectangular plates are F12 = 0.3 and F1m = 0.4, respectively. The system is at steady
state, the temperatures of surfaces 1 and 2 are T1 and T2, respectively, and the window
temperature is Tm. The plates are surrounded by a medium at ambient temperature T∞.
The window transmissivity is τm, and its reflectivity, ρm = 0 .

(a) Show that the net radiative flux between surfaces 1 and 2 transmitted through the

window is given by q12,τ =
J1− J2

1/(F12τm)
, where Ji is the radiosity of surface i. [15%]

(b) Sketch the network for radiation exchange between all surfaces, including the
surroundings, clearly labelling all resistances. [30%]

(c) For the following questions, neglect the exchange with the surroundings.

(i) Obtain an expression for the total radiative flux q12 between surfaces 1 and 2,
as a function of the blackbody radiation emissive power Eb,1 and Eb,2 , for τm = 0.6 .

[25%]

(ii) Consider a case where, for λ < λ0, τm = 0.5, and for λ > λ0, τm = 0.6. Write
an expression for the total heat flux q12 as a function of the new parameters, and
explain how you would obtain the final value of q12. [30%]

END OF PAPER
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