EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 19 April 2016 2 to 3.30

Module 3B1

RADIO FREQUENCY ELECTRONICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed Engineering Data Book Smith Chart for question 4

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

- The International Space Station orbits the Earth every 93 minutes at a height of 375 km above the surface. A telecoms engineer wonders if it would be possible to make calls with a standard mobile phone onboard the space station if a suitable dish antenna has been set up on Earth, linked to a base-station. The dish would not be steerable, but would point directly upwards in a location which is periodically underneath the orbit path.
- (a) Explain the terms *Gain* and *Effective Aperture* and give the formula showing how they are inter-related. What is the approximate gain of a small dipole antenna, such as that used on a mobile phone?

 [15%]
- (b) If the transmitted RF power from an astronaut's mobile phone is 4 W, at a carrier frequency of 2 GHz:
 - (i) What power density and electric field strength would be seen at the Earth's surface, ignoring any atmospheric attenuation of the signal? [15%]
 - (ii) What is the required Gain of the dish antenna if the base-station requires a received signal strength of at least -100 dBm in order to operate? [20%]
 - (iii) If the antenna drives a matched load of 75 Ω , what voltage signal amplitude does this correspond to ? [10%]
- (c) Given the required *Gain* above, estimate the beam angle of the dish antenna and hence, how long a telephone call could last during each overhead orbit. [20%]
- (d) If the base-station is actually intended to work with a 150 Ω rather than 75 Ω antenna, design an impedance matching circuit using passive components to match the two together, and describe the effects of not having this circuit in place. [20%]

- An RF amplifier is required to boost the signal from an antenna receiving mobile phone signals, so that it can feed a distributed antenna array inside a road traffic tunnel, to prevent mobile calls from dropping out during transit. The RF carrier frequencies are around 2 GHz.
- (a) Draw the circuit diagram for a single-stage RF transistor amplifier and briefly describe the function of each of the circuit components.

[20%]

(b) Design an RF amplifier to provide a net gain of 20 dB in power, with an input impedance of 75 Ω and an output impedance of 50 Ω . The circuit should operate from a 15 Vdc supply and be able to provide up to 100 mW of output power. You may assume that a suitable transistor with $h_{fe} = 250$ is available.

[30%]

(c) In order to narrow the response of the amplifier to a peak around 2 GHz, a parallel LC resonant circuit is connected between the input and ground. If this circuit uses an inductor of 0.47 nH with a series resistance of 0.1 Ω , what value of capacitor should be employed, and what is the expected resonant bandwidth of this arrangement when it is connected into the circuit?

[20%]

(d) A cheaper, new RF transistor with the following properties is to be considered for this application: $h_{fe} = 300$, $f_t = 12$ GHz, $c_{cb} = 0.15$ pF, $c_{oe} = 0.12$ pF. Calculate the expected bandwidth of this transistor in the circuit and hence comment on its suitability for this application.

[30%]

3 (a) Draw the circuit for a 2-pole, low-pass *Voltage Controlled Voltage Source* (VCVS) filter and show how this circuit can be configured to produce a Butterworth filter response of the form:

$$\left|\frac{v_o}{v_i}\right| = A \left[1 + \left(\frac{f}{f_c}\right)^4\right]^{-\frac{1}{2}}$$

where the input and output voltage signals are V_t and V_o respectively and f_c is the cut-off frequency. How should the circuit be modified to obtain a high-pass response instead? [40]

[40%]

(b) A serial digital data link operates at 16 Mbit/s, where the received data signal needs to be filtered in order to remove high frequency carrier components from the waveform. Design a suitable low-pass, 4-pole VCVS filter circuit with a reasonably sharp cut-off, in order to clean up the signal without introducing significant overshoot.

[20%]

(c) Sketch the functional block diagram of a *Phase Locked Loop (PLL)* and briefly describe how such a circuit can be employed to recover the clock signal from serial data bits, in order to produce synchronised data and clock bit streams.

[25%]

(d) The 16 Mbit/s serial data signals are routed around a passenger aircraft to provide entertainment and communication services. In order to save weight, the data cables comprise round polymer cores coated with a thin layer of copper, rather than solid copper cores. What thickness of copper is required to minimise weight without significantly increasing the effective resistance of the cables in operation?

[15%]

VCVS filter design table

Bessel		Butterworth		Chebyshev	(0.5 dB)	
n	fin	A	fin	A	fn	A
2	1.274	1.268	1.000	1.586	1.231	1.842
4	1.432 1.606	1.084 1.759	1.000 1.000	1.152 2.235	0.597 1.031	1.582 2.660

4 (a) A 1.5 GHz oscillator comprises a negative impedance transistor circuit
connected to an LC resonant tank circuit, using an inductance of 3 nH. Show how a
pair of transistors can be connected to realise a negative impedance, and select suitable
circuit values for the oscillator if the inductor has a Q-factor of 30 and the circuit is to
operate from ±5 Vdc supply rails.

[35%]

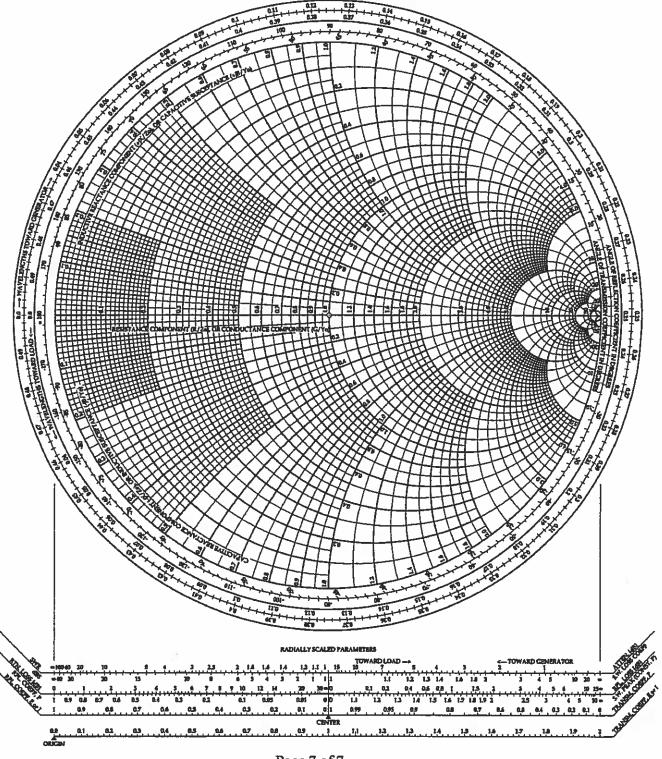
[20%]

[20%]

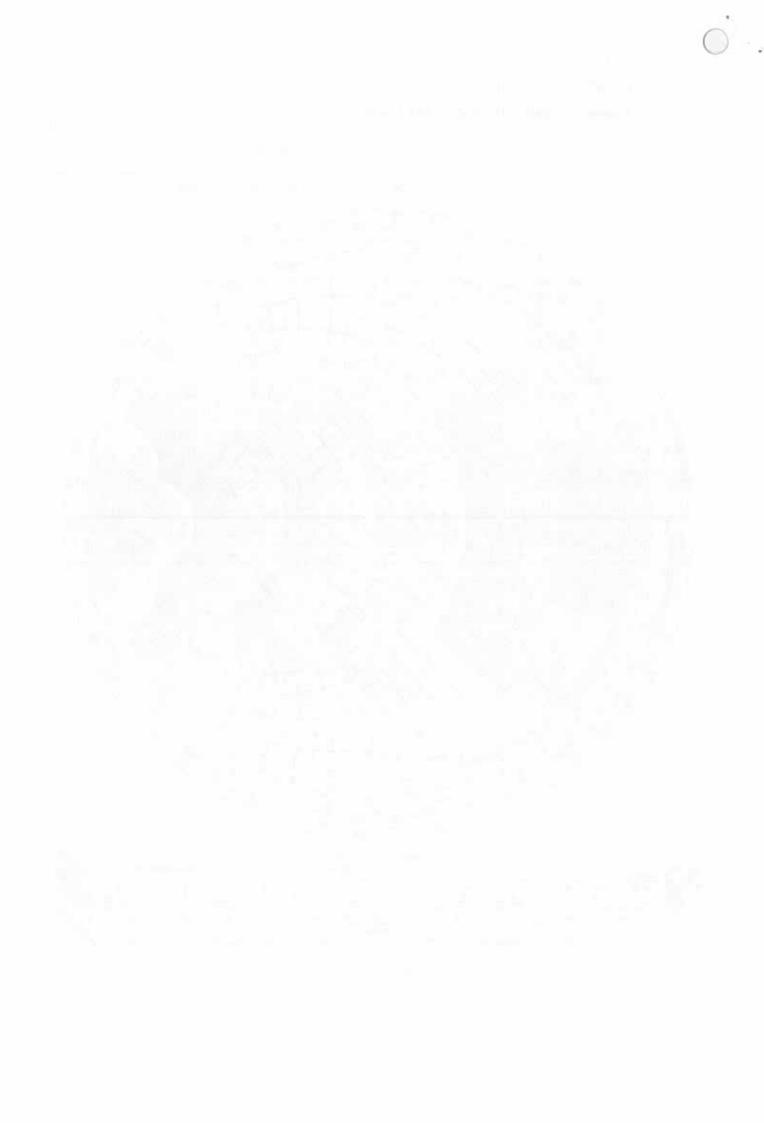
- (b) An RF amplifier module has a quoted input S-parameter value, $S_{11} = 0.35 \angle 40^{\circ}$ at a frequency of 2 GHz, when operated in a 50 Ω circuit.
 - (i) Plot this point on the Smith Chart and determine the input impedance of the module, expressing the result in the form $X \pm jY \Omega$.
 - (ii) Design an impedance matching circuit, using a length of transmission line with a dielectric relative permittivity of 2, and a series capacitor, to match the amplifier input impedance to 50Ω .
 - (iii) Express the equivalent unmatched input impedance as two passive components connected in series, and hence determine the expected S₁₁ value for the input at 1 GHz assuming the passive component values are constant. [15%]
 - (iv) What voltage reflection coefficient, at the input to the 2 GHz impedance matching circuit, would be expected when operating the circuit at 1 GHz? [10%]

END OF PAPER

THIS PAGE IS BLANK


EGT2

ENGINEERING TRIPOS PART IIA


Tuesday 19 April 2016, Module 3B1, Question 4

Candidate No.	
---------------	--

Smith Chart for Question 4 – to be detached and handed in with script.

Page 7 of 7

3B1 2016 - Numerical answers

- $1~(b)(i)~3.4~pW/m^2$, $50.6~\mu V/m$
 - (b)(ii) G = 16.4 (12.2 dB)
 - (b)(iii) 2.74 μV rms
 - (c) 28° ½ angle, ~ 14 mins.
 - (d) C = 0.53 pF, L = 5.97 nH or 1.06 pF, 11.9 nH
- 2 (b) R1 = 1500 Ω , R2 = 110 Ω , R3 = 2.2 Ω , R4 = 50 Ω , Gain ×16.4 (×20) unloaded gain, coupling caps.10 nF
 - (c) 13.5 pF, Q total = 6.1, Δf = 328 MHz
 - (d) 538 MHz (not fast enough)
- 3 (b) Butterworth, $R = 100 \Omega$, C = 133 pF, fc = 12 MHz
 - (d) skin depth $\delta = 16 \mu m$, therefore use 50 μm to have minimal resistive losses
- 4 (b)(i) 75 + j40
 - (ii) 48.6 mm, C = 2.1 pF
 - (iii) 75 Ω in series with 3.18 nH = 1.5 + j40 normalised @ 1 GHz, ρ = 0.25
 - (iv) $\rho = 0.74$

zerozone lenionen A. Allie 187

- (by) 14 pwm² 12 ouv. (by) 1 = 10 x 12 2 dB>
 - ct 38 Langie La roma
- $\text{Harch } [h_1(0)] = h_1(0) = h_2(0) = 0$ (1)
- 2 (b) R1 = (505 Or R2 = (10 or R3 = 2 2 O R4 = 50 O Gaps = (6 d to 50) insteaded gaps coupling caps, (0 a);
 - while also be the thirty by the (a)
 - Sh. 507 VII be not fase encuela-
 - 3 (b) Smith Ver 100 (c) = (1) pl. ft = (2 (1))
 - (d) Standenth a= 16 jun aberetore use 50 jun to have namual resource forse.
 - THE 27 WILL B
 - 11 48 6 mm. 2 2 1 pF
 - (iii) 75 Ω in series where Ω is an Γ Σ with normalized is 1.01 M ρ = 0.28
 - 10 0 = 0 Wh