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 EGT2 
 ENGINEERING TRIPOS PART IIA 
______________________________________________________________________ 
 
 Thursday 23 April 2015        9.30 to 11 
______________________________________________________________________ 
 
 
 Module 3C6 
 
 VIBRATION 
 
 Answer not more than three questions. 
 
 All questions carry the same number of marks. 
 
 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Write your candidate number not your name on the cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Attachment: 3C5 Dynamics and 3C6 Vibration data sheet  (6 pages). 
Engineering Data Book  

 
 
10 minutes reading time is allowed for this paper. 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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1 (a) A circular shaft of length L and radius a is made of material with density ρ  
and shear modulus G. One end of the shaft is prevented from rotating, while the other 
end is free.  The shaft can undergo small-amplitude torsional oscillations. Write down 
the appropriate governing equation and the boundary conditions at the two ends. Hence 
find the mode shapes and natural frequencies of the shaft.  Sketch the first three mode 
shapes.    [35%] 

(b) A shaft of length 2L but otherwise identical to the shaft from part (a) has both ends 
free. Without detailed calculation, sketch the first four mode shapes of this shaft for 
small-amplitude torsional vibration.  [15%] 

(c)  Equal and opposite torques Q are applied to the two ends of the shaft from part (b) 
so that it is held in equilibrium, then at time t = 0 the torques are suddenly released and 
the shaft begins to vibrate.  Explain why the calculation from part (a) is relevant to this 
problem, and hence obtain an expression for the subsequent transient vibration in the 
form of a modal superposition.  [50%] 

 

 
 

2 (a) A beam of uniform cross-section with second moment of area I  has length L 
and is made of material with density ρ  and Young’s modulus E.  The beam is freely 
pinned to rigid supports at both ends, and undergoes small-amplitude transverse 
vibration.  Write down the governing equation and appropriate boundary conditions, 
and hence find the mode shapes and natural frequencies of the beam. [35%] 

(b) Explain briefly why the modes of continuous systems must be orthogonal, given 
that the result has been proved for any discrete system.  For the pinned-pinned beam of 
part (a), show by direct integration that this orthogonality condition is satisfied. [20%] 

(c) Making use of appropriate sketches of mode shapes, give a careful plot of the 
displacement response of the beam of part (a), when driven with a harmonic force at  
distance L/4 from the left-hand end and observed at the point L/3 from the same end.  
Use a decibel scale, and include a frequency range that covers the first 12 natural 
frequencies.  Label and explain important features.  Assume small damping.  You may 
find it helpful to use ω1/2  rather than ω  for the horizontal axis. [45%] 
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3 Three uniform rods, each with mass m and length L, are joined together with 
frictionless hinges and supported in a plane as shown in Fig. 1.  The two outer ends are 
pinned to simple supports and there are two springs of stiffness k located at the hinges 
as shown.  A small mass ε m, where ε << 1, is attached to the inner rod at position x.  
The displacements y1 and y2 describe small deflections from static equilibrium.  Neglect 
the effects of gravity and assume that tension in the rods and bending of the rods can be 
neglected. 

(a) For the case where 0=ε ,  derive an equation for the kinetic energy of the system 
and show that the mass matrix is 

   M =m
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 [20%] 

(b) For the case where 0=ε , sketch the natural mode shapes of vibration of the 
system and calculate the natural frequencies. [20%] 

(c) For the case where 0≠ε ,  use Rayleigh’s principle to show that the lower natural 
frequency becomes 

   ω2 ≈
k
m
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and find a corresponding approximate expression for the higher natural frequency. [40%] 

(d) What position of the additional mass makes the difference between the two natural 
frequencies (i) largest;  and (ii) smallest?   Justify your answers. [20%] 

Fig.  1 
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4 A five-element discrete model of a satellite, used to calculate axial vibration 
transmission, is shown in Fig. 2.  Each element has mass m and is joined to adjacent 
elements with springs of stiffness k. 

(a) Without calculating the eigenvalues or eigenvectors, sketch plausible mode shapes 
for each of the five natural frequencies of the discrete model. [20%] 

(b) Explain why two of the natural modes have eigenvectors that can be expressed in 
the form [–1 –α  0  α  1]T.  Use Rayleigh’s method to estimate the lower of the two 
corresponding natural frequencies. [20%] 

(c) By differentiating Rayleigh’s quotient, or otherwise, calculate the exact values of 
α and the natural frequencies of the modes in part (b).  Which modes are these? [30%] 

(d) The base of the satellite is excited by an axial sinusoidal force F sinωt . Sketch a 
graph of the magnitude of the displacement y4 (on a dB scale) as a function of angular 
frequency ω.  [20%] 

(e) The base of the satellite is now forced to vibrate with a vertical displacement of  
±1 mm at a frequency corresponding to the lowest non-zero natural frequency.  What is 
the amplitude and phase of the displacement at the top of the satellite? [10%]    [10%] 
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Fig. 2 

 

END OF PAPER 

 



Answers 
 

1(a)  Modes un(x) = sin
(n −1/ 2)π x

L  , ωn =
(n −1/ 2)πc

L
, c = G / ρ   for n = 1,2,3... 

(c) Step response 
4LQ
Ga4π 3

(−1)n+1

(n −1/ 2)2
sin (n −1/ 2)π x

L
cos (n −1/ 2)πct

Ln
∑   

 

2(a) Modes un(x) = sin
nπ x
L , ωn =

nπ
L

⎛
⎝⎜

⎞
⎠⎟
2 EI

ρA   for n = 1,2,3... 

 

3(b) Modes 1,1[ ]  with ω1
2 = 6k

5m
 , 1,−1[ ]  with ω2

2 = 2k
m

 

(c)  Higher frequency ω2
2 ≈ 2k

m 1+ ε 1− 2x / L( )2⎡
⎣

⎤
⎦

  

 

4(c) 
 
α = −1± 5

2
, ωn

2 = 3∓ 5
2

k
m

  

 
 


