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EGT2
ENGINEERING TRIPOS PART IIA

Monday 2 May 2016 2 to 3.30

Module 3F2

SYSTEMS AND CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Consider a platoon of n vehicles, where the speed of the i th vehicle is vi as
depicted in Fig. 1. The acceleration of the first (lead) vehicle is given by v̇1 = u(t), where
u(t) is a control input, and the acceleration of subsequent (following) vehicles is given by

v̇i = k(vi�1 � vi ), i = 2, . . . , n.

The gain k > 0 is the same for all vehicles.

v1v2vn

· · ·

Fig. 1

(i) Consider a platoon of length n = 3. Write down a state-space model of the
system, and determine if the system is observable from measurements of v3 alone. [30%]

(ii) Repeat for n = 4. What can you infer about the observability of the system
from the velocity of the final vehicle vn for platoons of arbitrary length n? [20%]

(b) Let k = 2. Design a state-space observer to estimate the states of a platoon of
length n = 3 from a measurement of the final vehicle’s velocity, giving your answer as
the individual equations for the rate of the change of the estimates of each velocity v̂i (i.e.
˙̂v1 = . . . etc). The poles of the observer should all be placed at s = �1. [40%]

(c) For k = 2, and the observer of the previous section, a controller u = k(V � v̂1) is
now implemented. Here, V is a constant desired speed. Write down the location of all the
closed-loop poles. [10%]
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2 (a) (i) Define the notion of controllability for a state-space model. [10%]

(ii) Give two ways by which the controllability of a state-space model may be
determined. [10%]

(b) Consider the system of three tanks shown in Fig. 2, where each tank has a unit
cross-sectional area. Water is added to the second tank at volumetric rate u.

x1
x2 x3

k1(x1 � x2) k3(x3 � x2)

k2x2

u

Fig. 2

(i) Show that the state space equations for this system can be written as

ẋ =
2

64
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75 u

[10%]

(ii) Under what conditions is the system controllable? [30%]

(iii) If k1 = k3 = 1 and k2 = 0 then what is the subsequent response to the input
u(t) = �(t)? [30%]
What is the set of reachable states for these parameters? [5%]
Comment on this result. [5%]
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3 Figure 3 shows a pendulum free to rotate in a vertical plane. The pendulum is able
to make more than one complete rotation, and ✓(t) denotes its total cumulative rotation
since t = 0. The equation of motion, including a term to represent damping, can be
written as

✓̈ + 2✓̇ + 8 sin ✓ = 0.

✓
l

m

Fig. 3

(a) Write down a state space model of the system, with states x1 = ✓ and x2 = ✓̇ , and
characterize all equilibria of the system. [20%]

(b) Linearize the system about each equilibrium, characterising each as stable or
unstable. [50%]

(c) Hence, sketch the state plane trajectories of the system, paying particular attention
to the regions in the vicinity of the equilibrium points. Your sketch should cover a range
of x1 from a little less than 0 to a little greater than 2⇡ and show at least one trajectory
that starts at a point with x1 = 0, x2 > 0 and finishes at a stable equilibrium with x1 6= 0.

[30%]
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4 A simplified model of the longitudinal dynamics of a proposed highly
manoeuvrable aircraft is given by

ẋ = 2x + u̇

where x is the vertical velocity of the aircraft and u is the elevator angle.

(a) Show that the transfer function from ū(s) to x̄(s) is given by

G(s) = s
s � 2

.

The aircraft is to be stabilised using feedback, so that

ū(s) = �K (s)x̄(s).

Explain, with reference to a root locus diagram, why any stabilising controller K (s), must
itself be unstable. What are the practical implications of this? [30%]

(b) Sketch the root-locus diagram for the feedback system when

K (s) = k
s + 2
s � 1

.

Find the range of values of k for which the feedback system is stable and the value of k
for which the dynamics are critically damped. [40%]

(c) Suppose, instead, that K (s) has the form

K (s) = k
1

(s + a)(s � 1)
.

(i) Sketch the root locus diagram when a = 1. [20%]

(ii) Under what conditions on a is the feedback system stable for sufficiently large
values of k? [10%]

END OF PAPER
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