
Version GV/4

EGT2
ENGINEERING TRIPOS PART IIA

Friday 5 May 2017 2 to 3.30

Module 3F2

SYSTEMS AND CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Define what it means for a system to be controllable. [20%]

(b) For a particular single central heating radiator, the outlet temperature Tout can be
assumed to satisfy the differential equation

dTout

dt
= ka(Tin − Tout)− kb(Tin + Tout)

where ka and kb are constants, Tin is the inlet temperature and the temperatures are
measured with respect to some fixed reference.

Three identical such radiators are placed in series, with the inlet temperature of the second
being equal to the outlet temperature of the first, and the inlet temperature of the third
being equal to the outlet temperature of the second.

(i) Find a state-space description of the system of three radiators, with the states
being the outlet temperatures of the three radiators and the input being the inlet
temperature of the first radiator. [20%]

(ii) Find the set of steady-state outlet temperatures which can be achieved. [20%]

(iii) Is the system controllable from the inlet temperature of the first radiator? [20%]

(iv) Explain how an input Tin(t) can be constructed to take the system from any
initial condition to any of the states found in part (ii) at a specified time T , and hold
it there. (You are not required to compute a closed-form expression for this input.)
Are there any limits to how short the time T can be? Consider the possibility of
both theoretical and practical limitations. [20%]

[Recall that the controllability grammian is defined as W (t1) =
∫ t1

0 eAτ B BT eAT τ dτ ]
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2 (a) A system with transfer function

G(s) =
s2
+ 1

s2 + 2

is to be controlled with a constant gain feedback controller

K (s) = k

Paying careful consideration to the angle condition, sketch the root-locus diagram for the
feedback system as k varies. Hence, or otherwise, deduce that there is no value of k for
which the feedback system is asymptotically stable. [30%]

(b) An integral controller,

K (s) =
k
s

is now used with the same G(s). Sketch the root-locus diagram for this combination and
deduce the range of k for which the feedback is system is stable. [40%]

(c) In an attempt to improve the damping of the feedback system, a controller of the
form K (s) = k(s+α)

s(s+1) is now used instead. Using the angle condition again, determine the
value of α that results in the feedback system having a closed-loop pole at s = −1 − j
for some value of k. [30 %]
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3 A small permanent magnet of mass m is suspended in a tube above an electromagnet
of length L as in Fig. 1, so that the force (vertically upwards) on the permanent magnet is
given by

F(t) = ki(t)
(

1
x(t)2

−
1

(x(t)+ L)2

)
where x is the height of the permanent magnet above the top of the electromagnet and i
is the current in the electromagnet. The tube constrains the mass to move vertically.

(a) Write down a state-space model of this system, with input i . [25%]

(b) Linearise this system about an equilibrium with x = X . What value of i is required
to maintain this equilibrium (you may take g to equal 10ms−2). [25%]

(c) If m = 0.1kg, L = 0.1m, X = 0.05m and k = 0.1N/(A/m2), then design a state
feedback controller to place the poles of the linearised closed loop system at −1 ± j .
Write down the full form of this controller, expressing i in terms of x and dx

dt . [25%]

(d) Modify the controller of part (c) so that the equilibrium is now at X = 0.06m but
the state feedback gains are unchanged. Where are the closed-loop poles now? [25%]

i

F

x

L

i

Fig. 1
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4 Consider the feedback interconnection of the system Y (s) = G(s)
(
U (s) + D(s)

)
with the controller U (s) = K (s)Y (s). G(s) has the state space realisation

ẋ = Ax + B(u + d)

y = Cx

and K (s) is an observer based controller with state feedback gain F and observer gain H .
D(s) represents an external disturbance signal.

(a) Write down the state space equations of the observer (with estimated state x̂) and
the control signal and hence show that

K (s) = −F(s I − A + B F + HC)−1 H
[25%]

(b) Find the state space equations of the closed loop system, with state vector

[
x

x − x̂

]
.

[25%]

(c) Where are the closed-loop poles, and under what conditions may they be freely
assigned (give relevant tests)? [25%]

(d) Find the transfer function from D(s) to Y (s). Compare this to the case where full
state feedback is available. [25%]

(Hint: Recall that

[
X Z
0 Y

]−1

=

[
X−1

−X−1 ZY−1

0 Y−1

]
when the indicated inverses

exist.)

END OF PAPER
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