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 EGT2 
 ENGINEERING TRIPOS PART IIA 
______________________________________________________________________ 
 
 Wednesday 3 May 2017        9.30 to 11 
______________________________________________________________________ 
 
 
 Module 3M1 
 
 MATHEMATICAL METHODS 
 
 Answer not more than three questions. 
 
 All questions carry the same number of marks. 
 
 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Write your candidate number not your name on the cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Attachments: 3M1 data sheet (4 pages) 
Engineering Data Book 
 

 
10 minutes reading time is allowed for this paper. 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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1 (a) Compute the     

€ 

l1,     

€ 

l2  and   

€ 

l∞  norms for the following vectors: 

         

€ 

uT = 1 1 1 4[ ],       

€ 

vT = −10 9 0 2[ ],       

€ 

wT = −9 2 10 0[ ] [10%] 

(b) (i) Compute the 1-norm, 2-norm and ∞-norm (operator norms) for the matrices: 

    

    

€ 

A =

−3 0 0 0
0 11 0 0
0 0 −12 0
0 0 0 7

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

   and   
    

€ 

B =
3 −2
4 −1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  [20%] 

 (ii) Consider   

€ 

n × n  matrices C and D. If       

€ 

C p = 5 and       

€ 

D p < 7 , where     

€ 

p > 0  

is an integer, provide upper bounds for 

        

€ 

C + D p    and       

€ 

CD p  [10%] 

(c) A polynomial interpolation problem involves solving   

€ 

Ap = b to find the 
coefficients of the polynomial, where A is the Vandermonde matrix: 

    

      

€ 

A =

x1
3 x1

2 x1 1
x2

3 x2
2 x2 1

x3
3 x3

2 x3 1
x4

3 x4
2 x4 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

For the case of interest,     

€ 

x1 = 800 ,     

€ 

x2 = 801,     

€ 

x3 = 802  and     

€ 

x4 = 803, and  

   

      

€ 

A = U

1.030 ×109

1.792 ×103

2.495 ×10−3

2.606 ×10−9

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

V T  

where U and V are orthogonal matrices. 

 (i) Compute the condition number   

€ 

κ2 for the case of interest and comment on 
its significance.  [15%] 

 (ii) For an error   

€ 

δb in the right-hand-side vector, b, show that the error in the 
solution,   

€ 

δp, satisfies 

    

      

€ 

δp
p

≤ A A−1

κ (A )
! " # $ # 

δb
b

 [30%] 

 (iii) Suggest a simple reformulation of the particular interpolation problem 
considered in this question that would improve the conditioning of A. [15%]
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2 The annual power requirements of a large chemical processing plant are defined in 
terms of a function     

€ 

E( x)  that gives the total number of MW-hours required at power 
levels up to x MW. The company can meet its requirements by installing its own 
combined cycle gas turbine (CCGT) plant of capacity (in MW)     

€ 

x1  for base load supply, 
its own diesel generators of total capacity (in MW)     

€ 

x2  for meeting additional demand, 
and by purchasing electricity from the grid for satisfying peak demand only. 
 Let     

€ 

c1 and     

€ 

c2  be the yearly capital costs (per MW of capacity) of the CCGT plant 
and diesel generators, respectively, and     

€ 

r1 and     

€ 

r2  be their running costs (per MW-hour 
generated). Let e be the price of the electricity purchased from the grid (per MW-hour). 
The plant’s peak power requirement is     

€ 

Pmax (in MW). 

(a) Show that, in order to find the balance of generating capacity that minimizes the 
cost of supplying electricity to the plant, an appropriate objective function is 

    

€ 

f ( x1, x2 ) = c1x1 + c2x2 + r1E( x1) + r2 E(x1 + x2 ) − E(x1)[ ] + e E(Pmax ) − E( x1 + x2 )[ ]  

Identify any constraints that apply.  [15%] 

(b) Assuming that the optimal solution is interior to the constraints (i.e. that this can 
be treated as an unconstrained optimization problem), 

 (i) find the first-order necessary conditions governing the optimum, and 

 (ii) show that the second-order conditions require that 

        

€ 

(r1 − r2) E"( x1) > 0  

 and       

€ 

(r2 − e) E"( x1 + x2 ) > 0  

 where 
    

€ 

E"( x) =
d 2E(x)

dx2 .  [45%] 

(c) Find the optimal balance of generating capacity if: 

        

€ 

Pmax = 900 MW  

        

€ 

c1 = £90000 MW−1 

        

€ 

c2 = £45000 MW−1 

       

€ 

r1 = £75 per MW-hour 

       

€ 

r2 = £105 per MW-hour 

       

€ 

e = £150  per MW-hour 

  
    

€ 

E( x) = E0 sin
πx

2Pmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  with     

€ 

E0 = 3.942 ×106 MW-hours [40%] 
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3 A gas company owns a pipeline network, sections of which are used to pump 
natural gas from its main field to its distribution centre. The network is shown in Fig. 1 
below, where the direction of the arrows indicates the only direction in which the gas 
can be pumped. The numbers next to each network link indicate the capacity   

€ 

ui  in units 
of gas per month, and the cost   

€ 

ci  in $ per unit of using that link, in the format     

€ 

(ui ,ci ). 
The company currently produces 8000 units per month from its main field (node 1) and 
must transport all this gas to the distribution centre (node 5). The intermediate nodes (2, 
3 and 4) are large pumping stations. 

 

Fig. 1 

 The solution shown in Fig. 2 has been suggested. In this figure non-zero flows are 
shown next to the arc in question. 

    

    Fig. 2 

(a) Explain why the solution as shown in Fig. 2 does not constitute a spanning tree of 
the network. How can it be modified so that it does constitute a basic feasible 
solution?   [15%] 
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(b) Taking     

€ 

y1 = 0 , find the remaining simplex multipliers associated with a basic 
feasible solution for the flows shown in Fig. 2. Hence show that the solution suggested 
is not optimal. 
 You are reminded that, for such problems, the simplex multipliers for two nodes i 
and j are related by     

€ 

cij − yi + yj = 0, where   

€ 

cij  is the cost per unit flow from i to j, and 
that the reduced costs for non-basic variables are given by   

€ 

c ij = cij − yi + yj . [30%] 

(c) An alternative feasible basis is shown in Fig. 3. In this figure the solid arcs 
constitute the basis for the problem. The dashed arc 4–5 signifies a non-basic variable at 
its upper bound. All the arcs shown as grey dotted lines are non-basic variables at their 
lower bounds (0). Non-zero flows are shown next to the arc in question. 

    

    Fig. 3 

 Using the basis in Fig. 3 as a starting point, use the simplex network method to 
find the minimum cost network flow allocation.  [55%] 
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4 The distribution of particles undergoing Brownian motion is a Wiener process 
with no drift. This process can be described by the following partial differential 
equation 

    
    

€ 

∂p( x,t )
∂t

= α
∂2p( x,t )
∂x2  

where x indicates the position and t indicates the time instance.  α is a fixed scalar 
value. 

(a) By using separation of variables, show that the general solution to this equation 
can be expressed as 

    
    

€ 

p( x,t ) = a(k )exp(−αk 2t)
−∞

∞∫ exp(ikx)dk  

where     

€ 

i = −1  and     

€ 

a(k ) is a function of k.  [25%] 

(b) The initial condition for the process is set so that all particles start at the same 
position,     

€ 

p( x,t ) = δ( x) , where     

€ 

δ( x)  is the Dirac delta function. 

 (i) Show that the solution with this boundary condition is Gaussian distributed 
and has the form  

           

€ 

p( x,t ) = N ( x | 0,b(t ))  
 Find an expression for the variance     

€ 

b(t ). The following equality may be useful 

     
    

€ 

exp(−αk2t)
−∞

∞∫ exp(ikx)dk =
π
αt

exp −
x2

4αt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  [35%] 

 (ii) Describe with the aid of sketches how the distribution of particles changes 
over time, and the nature of the path of a single particle. [15%] 

(c) A large number of particle trajectories are generated. What is the correlation 
between the trajectory positions at times     

€ 

t1 and     

€ 

t2 , where     

€ 

t2 > t1? Note that the 
correlation between two variables x and y is defined as 

    

      

€ 

Corr(x, y) =
E ( x − µx )( y − µy ){ }
E ( x − µx )2{ }E ( y − µy )2{ }

 

where     

€ 

E{ } is the expected value,   

€ 

µx is the mean of variable x and   

€ 

µy the mean of 

variable y. You should simplify your expression for the correlation as far as possible. [25%] 
 

    END OF PAPER 
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Answers 

Q1 (a)     

€ 

u 1 = 7;     

€ 

u 2 = 19 ;     

€ 

u
∞

= 4 

      

€ 

v 1 = 21;     

€ 

v 2 = 185 ;     

€ 

v
∞

=10 

      

€ 

w 1 = 21;     

€ 

w 2 = 185 ;     

€ 

w
∞

=10 

 (b)(i)     

€ 

A 1 =12 ;     

€ 

A 2 =12 ;     

€ 

A
∞

=12  

      

€ 

B 1 = 7;     

€ 

B 2 = 15+10 2 ≈ 5.398;     

€ 

B
∞

= 5 
 (c)(i) 

      

€ 

C + D p <12 ; 
      

€ 

CD p < 35 

 (c)(ii)   

€ 

3.95 ×1017

 

Q2 (b)(i) 
    

€ 

∂ f
∂x1

= c1 + (r1 − r2)E'( x1) + (r2 − e)E'( x1 + x2 ) = 0
 

  
    

€ 

∂ f
∂x2

= c2 + (r2 − e)E'(x1 + x2 ) = 0  

 (c)     

€ 

x1 = 774.1MW ;     

€ 

x2 = 42.3 MW  

Q3 (b)  Arc 1–3, which is at its lower bound, has a negative reduced cost (–6.5), so the flow 
allocation specified cannot be optimal.

 
 (c) The optimal flow allocation routes 5000 units from node 1 to node 5 via node 3 and 

3000 units from node 1 to node 5 via node 4. 

Q4 (b)(i)      

€ 

b(t ) = 2αt  

 (c)     

€ 

t1 t2  


