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 ENGINEERING TRIPOS PART IIB 

______________________________________________________________________ 

 

 Tuesday 21 April 2015        9.30 to 11 

______________________________________________________________________ 

 

 

 Module 4A10 

 

 FLOW INSTABILITY 

 

 Answer not more than three questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Attachment: 4A10 Data Card (2 pages). 

Engineering Data Book  

 

 

10 minutes reading time is allowed for this paper. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 
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1 The characteristic vertical displacement, 𝐴𝑦 , of a spring-supported, damped model 

of a structure, with characteristic vertical dimension 𝐷, in a horizontal flow of steady 

velocity 𝑈, is shown in Figure 1. The figure shows the response 𝐴𝑦/𝐷 plotted against the 

reduced velocity 𝑈/𝑓𝐷, where 𝑓 denotes the frequency of vibration. 

 

 

 

 

 

 

Figure 1. Sketch showing a typical response of a spring-supported damped structure. 

 

(a) (i) The response shown in Figure 1 may be attributed to two distinct mechanisms 

of flow-structure interaction. What are the names of these mechanisms and what are 

the primary differences between them?  

 (ii) Redraw Figure 1 and annotate to show which mechanism causes which 

response. How could the response be damped in practice? Mark on your redrawn 

figure (as a dashed-line) the response you would expect if the damping of the system 

were increased. 

                     [20%] 

(b) Explain what the dimensionless quantity 𝑈/𝑓𝐷 represents physically. Sketch the 

path traced out by the model for (i) 𝑈 (𝑓𝐷)⁄ = 3 and (ii) 𝑈 (𝑓𝐷)⁄ = 6. Annotate 

your sketches.  

                     [20%] 

(c) Explain what ‘added mass’ refers to in the context of flow-structure interaction. 

What is the link with the mass ratio? Comment on the significance of neglecting the 

added mass when examining the dynamics of a buoyant air-filled spherical shell 

(e.g. a ping-pong ball) that is free to rise in a stationary body of water.  

                     [20%] 
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(d) Consider a long rigid horizontal cylinder (of diameter 𝐷) in horizontal steady flow 

of velocity 𝑈 and density 𝜌.  A classic spring-mass-damper system approach to 

predict the vertical displacement 𝑦(𝑡) of the cylinder (due to a lift force 𝐹𝐿 =

𝜌𝑈2𝐷𝐶𝐿 sin(𝜔𝑠𝑡) /2 which results from the shedding of vortices at a circular 

frequency 𝜔𝑠 , where 𝜔𝑠 = 2𝜋𝑓𝑠 ), yields a dimensionless response of the form:  

 

𝑦

𝐷
=

𝜌𝑈2𝐶𝐿

2𝑘√[1 − (𝜔𝑠 𝜔𝑦⁄ )
2
]
2

+ (2𝜁 𝜔𝑠 𝜔𝑦⁄ )
2
sin⁡(𝜔𝑠𝑡 + ∅) 

 

where the damping factor is 𝜁, the spring constant is denoted 𝑘 , and 𝜔𝑦 denotes the 

natural circular frequency of vibration of the cylinder. 

 

 Show that the (dimensionless) resonant amplitude of vibration is 

𝜌𝑈2𝐶𝐿
4𝑘𝜁

⁡ 

  and deduce, with reasoning, why the amplitude at resonance may be regarded as 

independent of flow velocity and inversely proportional to reduced damping. 

                     [40%] 
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2 A long slender cylindrical liquid thread, known as a capillary jet, is moving at a 

steady velocity in still air. The liquid has density 𝜌 and the surface tension is 𝛾. 

Initially the cylinder has a radius  𝑟 = 𝑎. When perturbed from this initial state, wave-

like disturbances form, so that the radius of the thread varies as 𝑟 = 𝛼 + 𝛽cos⁡(𝑘𝑥), for 

some constant 𝛼. The coordinate 𝑥  is measured along the axis of the jet, and 𝛽 and 𝑘 

denote the amplitude and wavenumber of the disturbance, respectively, where 𝜆 = 2𝜋 𝑘⁄  

is the wavelength. 

    

(a) For small amplitude disturbances, show that the ratio of the surface potential 

energy of the jet in the perturbed state to that in the initial state may be written as  

𝑃𝐸𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑

𝑃𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= 1 +

𝛽2

4𝑎2
(𝑘2𝑎2 − 1) 

 

Hence, or otherwise, determine the wavelengths of disturbances that grow with 

time.                    [60%] 

 

(b) Use dimensional arguments to establish an expression for the dimensionless 

growth rate of the disturbances as a function of the wavenumber 𝑘 and the 

unperturbed radius 𝑎. Include brief explanations to clarify your workings. 

                     [20%] 

 

(c) Plotting dimensionless growth rate against dimensionless wavenumber, sketch the 

variation of the growth rate that is observed in practice. What is the physical 

significance of the maximum growth rate? 

                     [20%] 
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(a) Consider the classic Taylor-Couette problem, namely, of a fluid in the narrow gap 

between two long concentric co-rotating circular cylinders. Provide a physical 

argument to establish that the flow is stable provided 

𝑑

𝑑𝑟
(Ω𝑟2)2 ≥ 0 

throughout the fluid, where⁡Ω denotes the angular velocity of the fluid. You may 

assume that the radial pressure gradient 

 

𝜕𝑝

𝜕𝑟
=
𝑢𝜃
2

𝑟
 

where 𝑢𝜃 denotes the circumferential velocity.     

                     [25%] 

 

 

(b) Consider a two-dimensional inviscid mixing layer with a velocity profile 

 

𝒖 = {
𝑈1𝒊 𝑧 > 0
𝑈2𝒊 𝑧 < 0

 

 as shown in Figure 2.  

 

 Investigate the temporal stability of this flow by considering small disturbances to 

the interface of the vortex sheet of the form 

𝜂(𝑥, 𝑡) = 𝜂̂𝑒𝑖𝑘𝑥+𝑠𝑡 

for wavenumber 𝑘 and growth rate 𝑠 , to show that the dispersion relationship is  

𝑠 = −
1

2
𝑖𝑘(𝑈1 +𝑈2) ±

1

2
𝑘(𝑈1 − 𝑈2) 

                     [75%] 

 

 

 

 

Figure 2. Schematic of velocity profile. 

𝑥 

𝑧 

𝑈1 

𝑈2 

𝜂(𝑥, 𝑡) 
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4 The one-degree-of-freedom galloping model shown in Figure 3, of transverse 

dimension 𝐷, is exposed to a horizontal flow of steady velocity 𝑈 and density ρ. The 

equation governing the motion of the model as it responds to the net vertical aerodynamic 

force ⁡𝐹𝑦 = ρ𝑈2𝐷𝐶𝑦/2 is 

 

𝑚𝑦̈ + (2𝑚𝜁𝜔𝑦)𝑦̇ + 𝑘𝑦 = 𝐹𝑦                                      (1)             

In Equation 1, a dot signifies differentiation with respect to time and the displacement 𝑦 

is measured vertically downward, as indicated in Figure 3. The mass per unit length of 

the model (including the added mass) is denoted by 𝑚, 𝜁  denotes the damping factor, 𝜔𝑦 

the natural circular frequency of the cylinder and 𝑘 the spring constant. 

 

 

 

 

 

Figure 3. The spring-supported, damped, one-degree-of-freedom galloping model. 

(a) Describe the mechanism that gives rise to the ‘galloping’ of a structure.    

                     [15%] 

(b) Explain what is meant by ‘soft’ and by ‘hard’ excitation. Give an example of a 

physical mechanism that could give rise to the hard excitation of a structure, e.g. the 

deck of a bridge.   

                     [15%] 

(c) Show that the vertical force coefficient 𝐶𝑦⁡is related to the drag force coefficient 𝐶𝐷 

and the lift force coefficient 𝐶𝐿 via 

  

𝐶𝑦 = −
𝑈𝑟𝑒𝑙
2

𝑈2
(𝐶𝐿 cos 𝛼 + 𝐶𝐷 sin 𝛼) 

 

 
𝑦

= 𝜋𝑟2
𝑈

= 𝜋𝑟2

𝑘

= 𝜋𝑟2

𝐷 
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 where 𝑈𝑟𝑒𝑙 denotes the velocity of the fluid relative to the moving model. 

                     [20%] 

 

(d) Explain the physical significance of fluid forces that give rise to a damping term 

that is negative in the equation governing the motion of the model. 

 

Show that for small angles of attack α , the model will be stable to galloping if  

𝜕𝐶𝑦

𝜕𝛼
< 0  

 and deduce the conditions required for the onset of galloping. 

                     [50%] 

 

 

 

    END OF PAPER 
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