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EGT3
ENGINEERING TRIPOS PART IIB

Monday 23 April 2018 9.30 to 11.10

Module 4A15

AEROACOUSTICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
Engineering Data Book
CUED approved calculator allowed
Attachment: 4A15 Aeroacoustics data sheet (6 pages).

10 minutes reading time is allowed for this paper at the start of
the exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 An earthquake can result in surface waves of significant amplitude. These waves
radiate sound into the atmosphere. As a result of the Sumatran earthquake in 2004,
surface waves with a vertical velocity amplitude of 1cms−1 and a time period of 20s
were recorded. The speed of the surface wave was eight times the speed of sound in air.
In the following, assume that the Earth is flat and the surface waves are plane and have a
constant amplitude.

(a) Determine the direction of propagation of the plane sound wave. [20%]

(b) Determine the mean intensity of the plane waves radiated into the atmosphere.
Assume, at sea level, the atmosphere has a mean density of ρ0 = 1.2kgm−3 and speed of
sound of c0 = 340ms−1. [60%]

(c) Seismic activity can be detected in space. By applying conservation of energy
of the sound wave and neglecting sound dissipation, refraction and reflection for these
low-frequency waves, find the velocity amplitude induced by the sound wave in the
ionosphere. Assume that the gas density in the ionosphere is 10−8ρ0. Because the speed
of sound does not vary as drastically as the density with altitude, assume that c0 is a
constant for the purpose of getting an order of magnitude estimate. You may also assume
that the spatial extent of the surface wave is much longer than the distance from the surface
of the Earth to the ionosphere, so that the waves remain plane with no spherical spreading.

[20%]
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2 Free reeds, found in musical instruments such as the harmonica, produce a tone
when air is sucked through them because the flow makes the reed oscillate within the reed
block at its resonant frequency. This modulates the opening of the reed resulting in a
pulsating mass flow. In the following assume that the unsteady mass flow per unit volume
at the reed is µ̇(x, t), where x is the position and t is the time (a dot over a letter denotes
a time derivative).

(a) Show that the equation governing sound propagation from the reed is given by

∂ 2ρ ′

∂ t2 − c2
0∇

2
ρ
′ = µ̈(x, t)

where ρ ′ is the acoustic density perturbation and c0 is the ambient speed of sound. [20%]

(b) If the unsteady mass flow through the reed is

ṁ =
∫

V
µ̇(y, t)dy

where V is the source volume, then assuming that the reed is a spatially compact source
radiating sound into free space, show that the acoustic pressure field radiated at a large
distance r from the reed is given by

p′(r, t) =
m̈(t− r/c0)

4πr

[40%]

(c) Assuming ṁ(t) = ρ0Q[1 + cos(2π f t)], where ρ0 = 1.2 kgm−3 is the ambient
density of air and Q = 12 L/min is the flowrate, f = 261.6 Hz is the resonant frequency
of the reed, calculate the SPL of the sound radiated at a distance of 10 m from the reed. [30%]

(d) If, instead of sucking air through the reed, the reed is mechanically plucked it makes
very little sound. Explain why this is the case. [10%]
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3 Acoustic pressure fluctuations, p′, in a fluid which has a uniform mean flow in the
x3-direction at a Mach number M satisfy the convective wave equation

∇
2 p′−

(
1
c2

0

∂ 2 p′

∂ t2 +
2M
c0

∂ 2 p′

∂ t∂x3
+M2 ∂ 2 p′

∂x2
3

)
= 0

where c0 is the speed of sound.

A rigid walled duct of rectangular cross-section has a mean flow through it with Mach
number M in the x3-direction. The duct has width a and height b. The coordinate system
is shown in Fig 1.

(a) Explain why the pressure perturbation in acoustic modes of frequency ω within the
duct can be written in the form

p′(x, t) = eiωtg(x3)cos
(mπx1

a

)
cos
(nπx2

b

)
for some function g(x3) and integer constants m and n. Detailed calculations are not
required. [10%]

(b) By trying a solution of the form g(x3) = Aexp(ikx3), where A and k are constants,
find the function g(x3) in terms of k0(= ω/c0) and M. [60%]

(c) Interpret your solution for g(x3) when m = n = 0. [15%]

(d) For a mode with non-zero m and/or n, determine the frequency range for which that
mode is cut-off. [15%]

0

Fig. 1
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4 Consider a wall-bounded two-layer fluid system, in which the region x < 0 contains
a fluid of density ρ0 and sound speed c0, the region 0 < x < h contains a fluid of density
ρ1 and sound speed c1, and an infinite wall with complex impedance Z is located at x = h.
In x < 0 an incident plane sound wave of amplitude I and frequency ω propagates parallel
to the x axis.

(a) Show that the reflected wave in x < 0 has complex reflection coefficient

R = I
(1−Z∗)(1+ρ∗)+(Z∗+1)(1−ρ∗)exp(2ik1h)
(1−Z∗)(ρ∗−1)− (Z∗+1)(1+ρ∗)exp(2ik1h)

where
ρ
∗ =

c1ρ1
c0ρ0

, Z∗ =
Z

c1ρ1

and k1 = ω/c1. [80%]

(b) Calculate the modulus and phase of R/I when Z∗ = 1. Comment on the physical
implication of your results. [20%]

END OF PAPER
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Module 4A15 Aeroacoutics Data Sheet

USEFUL DATA AND DEFINITIONS

Physical Properties
Speed of sound in an ideal gas

√
γRT , where T is temperature in Kelvins

Units of sound measurement

SPL (sound pressure level) = 20log10

(
p′rms

2×10−5Nm−2

)
dB

IL (intensity level) = 10log10

(
intensity

10−12watts m−2

)
dB

PWL (power level) = 10log10

(
sound power output

10−12watts

)
dB

Definitions
Surface impedance Zs, relates the pressure perturbation applied to a surface, p′,

to its normal velocity v′; p′ = Zsv′

Characteristic impedance of a fluid ρ0c0

Specific impedance of a surface Zs/(ρ0c0)

Wavenumber k = ω/c0 = 2π/λ , where λ is the wavelength

Helmholtz number (or compactness ratio) = kD, where D is a typical dimension
of the source.

Strouhal number = ωD/(2πU) for sound of frequency ω (in rad/s), produced
in a flow with speed U , length scale D.

Basic equations for linear acoustics
Conservation of mass

∂ρ ′

∂ t
+ρ0∇ ·v′ = 0
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Conservation of momentum

ρ0
∂v′

∂ t
+∇p′ = 0

Isentropic

c2
0 =

d p
dρ

∣∣∣∣
S

Wave equation
1
c2

0

∂ 2 p′

∂ t2 −∇
2 p′ = 0

Energy density

e =
1
2

ρ0v′2 +
1

2ρ0c2
0

p′2

Intensity I = p′v′

Velocity potential φ ′ satisfies the wave equation and p′ =−ρ0
∂φ ′

∂ t , v′ = ∇φ ′.

Autocorrelation F(ξ ), the autocorrelation of f (y) is given by

F(ξ ) = f (y) f (y+ξ )

F(0) = f 2

Integral length scale, l

l f 2 =
∫

∞

−∞

F(ξ )dξ

Sound power
Sound power from a source is defined as

P =
∫

S
Ī ·dS =

∫
S∞

p′2

ρ0c0
dS

for a statistically stationary source. For an outward propagating spherically sym-

metrical sound field P = p′2
ρ0c0

4πr2, where p′ is the acosutic pressure at radius r.
For a sound field, which is a function of spherical polar coordinates r,θ only,

and is independent of the azimuthal angle,

P = 2πr2
∫

π

0

p′2

ρ0c0
sinθdθ
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Simple wave fields

1D or plane wave
The general solution of the 1D wave equation is p′(x, t) = f (t − x/c0) + g(t +
x/c0), where f and g are arbitrary functions. In a plane wave propagating to the
right p′ = ρ0c0u′; in a plane wave propagating to the left p′ = −ρ0c0u′, u′ being
the particle velocity.

Spherically symmetric sound fields
The general spherically symmetric solution of the 3D wave equation is

φ
′(r, t) =

f (t− r/c0)

r
+

g(t + r/c0)

r
,

where r is the distance from the source; f and g are arbitrary functions.

cosθ dependence
The general solution of the 3D wave equation with cosθ dependence is

p′(x, t)=
∂

∂x

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]
= cosθ

∂

∂ r

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]

Useful mathematical formulae

Spherical polar coordinates (r,θ ,ψ)

Gradient
∇p′ =

(
∂ p′

∂ r
,
1
r

∂ p′

∂θ
,

1
r sinθ

∂ p′

∂ψ

)
Divergence

∇ ·v′ = 1
r2

∂

∂ r

(
r2v′r

)
+

1
r sinθ

∂

∂θ

(
sinθv′θ

)
+

1
r sinθ

∂v′
φ

∂ψ

Laplacian

∇
2 p′ =

1
r2

∂

∂ r

(
r2 ∂ p′

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ p′

∂θ

)
+

1
r2 sin2

θ

∂ 2 p′

∂ψ2
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Delta functions

Kronecker Delta

δi j =

{
1 i = j
0 i 6= j

1D δ -function δ (x) = 0 for x 6= 0 and
∫

∞

−∞
δ (ax−b) f (x)dx = f (b/a)/|a|

3D δ -function δ (x) = δ (x1)δ (x2)δ (x3)

Convolution algebra

Convolution of f (x) and g(x)

( f ?g)(x) =
∫

∞

−∞

f (y)g(x−y)dy

Commutative properties
f ?g = g? f

∂

∂xi
( f ?g)(x) = f ?

∂g
∂xi

=
∂ f
∂xi

?g

Green’s function

3D Green’s function for wave equation(
∂ 2

∂ t2 − c2
0∇

2
)

g(x, t|y,τ) = δ (t− τ)δ (x−y)

g(x, t|y,τ) = δ {|x−y|− c0(t− τ)}
4πc0|x−y|

Lighthill’s Acoustic Analogy
Lighthill’s equation (

∂ 2

∂ t2 − c2
0∇

2
)

ρ
′ =

∂ 2Ti j

∂xi∂x j
.

For cold, isentropic, low Mach-number jets, Ti j can be approximated as:

Ti j = ρ0uiu j
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Observer

Rigid thin plate

Incident plane
wave

r

θ

θ
o

x

y

Figure 1: Geometry for edge scattering

Lighthill eight power law Acoustic power,

Pa ∼
ρod2

j

c5
0

u8
j ,

where d j and u j are the jet exit diameter and velocity, respectively.

Refraction

Snells’s law for determining a ray path is

sinθ

c0
= constant . (1)

Diffraction

Field scattered by a sharp edge If the incident plane waves is

pi(x, t) = Pinc exp(iωt + ik0xcosθ0 + ik0ysinθ0) , (2)

then the diffracted pressure is

pd = Pinc

(
2

πk0r

) 1
2 sin(θ0/2)sin(θ/2)

cosθ + cosθ0
exp
(
− iπ

4
− ik0r

)
. (3)
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In a cylindrical duct of radius a

The pressure field is given by

p′(x, t) = ei(ωt+nθ)Jn(zmnr/a)(Ae−ikx3 +Beikx3),

where zmn is the mth zero of J̇n(z) and k = (k2
0− z2

mn/a2)1/2.

For large azimuthal wavenumber, n

z1n ≈ n+1.85n1/3
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