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EGT3
ENGINEERING TRIPOS PART IIB

Friday 24 April 2015 9.30 to 11

Module 4A9

MOLECULAR THERMODYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Information relevant to this question can be found on the next page.

A stationary monatomic perfect gas at equilibrium has molecular mass m, number density
n, temperature T and gas constant per unit mass R. The cartesian components of the
molecular peculiar velocity are denoted by C1, C2 and C3.

(a) (i) Consider the integral,

I =
1
n

∞∫
−∞

∞∫
−∞

∞∫
−∞

C2
1

2
f dC1dC2dC3

where f is the Maxwell-Boltzmann velocity distribution. Without evaluating the
integral, but explaining your reasoning, write down an expression for I in terms of
R and T . [10%]

(ii) An imaginary plane within the gas is orientated such that the cartesian co-
ordinate x1 is normal to the plane. Write down an integral for the flux of the quantity
mC2

1/2 through unit area of the plane transported by molecules with C1 > 0. [5%]

(iii) Evaluate the integral and hence obtain an expression in terms of R and T for
the mean value of C2

1/2 for molecules crossing the plane with C1 > 0. Compare this
result with that of part (i) and comment on any differences. [35%]

(b) Suppose the gas has R = 2.08 kJ kg−1 K−1 and is confined between two parallel
plates separated by a distance of 2 mm. The temperatures of the plates are 300 K and
400 K. The dynamic viscosity of the gas at 350 K is 2.2× 10−5 kg m−1 s−1 and its
Prandtl number is 0.67. It may be assumed that molecules incident on the plates are
reflected diffusely. Calculate the Knudsen number and estimate the heat flux per unit area
between the plates when the gas pressure is,

(i) 1 Pa [25%]

(ii) 10,000 Pa [25%]
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Information for Question 1

‘One-sided’ molecular mass flux per unit area through a plane for a gas of density ρ :

ρC
4

=
ρ

4

(
8RT

π

)1/2

Maxwell-Boltzmann velocity distribution function :

f =
n

(2πRT )3/2
exp

[
−

(
C2

1 +C2
2 +C2

3
2RT

)]

Dynamic viscosity µ in terms of the mean free path λ :

µ =
ρCλ

2

Some definite integrals:

I(n) =
∞∫

0

xn exp(−x2)dx

n I(n) n I(n)

0
√

π

2
1

1
2

2
√

π

4
3

1
2

If n is even
∞∫
−∞

xn exp(−x2)dx = 2I(n)

If n is odd
∞∫
−∞

xn exp(−x2)dx = 0
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2 A perfect diatomic gas has a molar mass of 42 kg kmol−1. A crude model of the
molecular velocity distribution for the gas divides the molecules into six groups. Each
group contains the same number of molecules and each molecule in a group has the
same velocity. The molecules in this ‘6-group gas’ have absolute velocity components
ci (i = 1,2,3) in m s−1 as follows :

(480,120,0); (50,550,0); (50,120,430);

(−380,120,0); (50,−310,0); (50,120,−430).

(a) (i) Calculate the temperature of the 6-group gas. [20%]

(ii) Stating any assumptions, calculate the contributions to the total energy per
unit mass of the 6-group gas from the mean motion, the random translational motion
and the internal molecular motion. [20%]

(b) (i) Gas kinetic theory shows that the thermal conductivity k of a perfect
monatomic gas of density ρ can be expressed as

k = β
ρCλcv

2

where β is a constant, C is the mean peculiar speed, λ is the mean free path and cv

is the constant volume specific heat capacity. Explain briefly why simple ‘mean free
path’ theories give β = 1 whereas more exact theories give β ∼= 5/2. Describe how
the above expression can be modified to provide an approximation for the thermal
conductivity of diatomic and polyatomic gases. [15%]

(ii) If the dynamic viscosity of the 6-group gas is 20×10−6 kg m−1 s−1, estimate
its thermal conductivity. [15%]

(c) Consider the expression ci(c2/2) and explain what it represents physically. By
writing ci = ui +Ci (where ui is the mean velocity and Ci is the peculiar velocity)
decompose the expression into four terms. Identify the term representing the heat flux
per unit mass qi and calculate q1, q2 and q3 for the 6-group gas. [30%]
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3 (a) Figure 1 shows a diatomic molecule that is constrained to rotate in the x-y
plane. The orientation of the molecule at any instant is defined by the angle φ that its axis
makes with the x-axis, as shown. The form of the Schrödinger equation appropriate to
planar rotation is

d2ψ

dφ2 +
8π2Iε

h2 ψ = 0

where ψ is the wave function, h is Planck’s constant, I is the molecule’s moment of inertia
about the z-axis and ε is its rotational kinetic energy. Obtain the general solution to the
above equation and hence determine the possible values of ε . [20%]

φ x

y

Fig. 1

(b) The molecules of a certain ideal, diatomic gas have translational, rotational and
electronic energy modes only. The quantum energy levels of the electrons are such
that only the ground state with zero energy and the first excited state with energy ε are
significantly populated. Both states are non-degenerate.

(i) Write down an expression for the electronic partition function for a single
molecule. [5%]

(ii) By considering the fraction of molecules in the electronically excited state, or
otherwise, show that the electronic contribution to the constant volume specific heat
capacity is given by

cel
v =

Rτ2eτ

(1+ eτ)2

where R is the gas constant per unit mass and τ = −ε/(kT ), k being Boltzmann’s
constant and T being the temperature. [40%]

(iii) Stating your assumptions, show that the ratio of specific heat capacities
γ = cp/cv has a minimum when τ ≈−2.4 and determine the minimum value. [35%]
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4 The entropy of a stretched rubber band may be considered to comprise two
independent components: a configurational component that depends on the band’s length
L, and a thermal component that depends on its temperature T . Figure 2 illustrates a
simplified model for computing the configurational entropy. The rubber band is assumed
to consist of a bundle of long chain polymers, each comprising N monomers of length a.
One end of the chain is fixed at x = 0 and the other (at x = L) is subject to an externally
applied tension τ . Each monomer of the chain may be aligned either parallel (+) or anti-
parallel (−) to the x-axis such that there are N+ and N− monomers in the positive and
negative x-directions respectively.

(a) Explain why the number of distinct arrangements for the orientations of the
monomers in a single chain is given by

Ω =
N!

(N+)!(N−)!
[15%]

(b) State what assumption is required for Boltzmann’s relation (S = k lnΩ, where k
is the Boltzmann constant) to apply to the configurational entropy and, assuming this is
valid, show that the rate of change of entropy with length for a single polymer chain may
be written in the form (

∂S
∂L

)
T,N

= A ln
(

Na−L
Na+L

)
Find an expression for the factor A in terms of quantities defined above.

Note that Stirling’s formula states that ln(m!)≈ m lnm−m, for m� 1. [40%]

(c) With reference to the entropy, explain carefully what would happen to the
temperature of the rubber band if it were stretched reversibly and adiabatically. [10%]

(d) By considering heat and work transfers to or from a polymer chain for a general
(non-adiabatic) reversible process, show that infinitesimal changes are related by

δF = τδL−SδT

where F = U − T S is the Helmholtz function and U is the internal energy. Hence
determine what will happen to the tension in the rubber band if it is heated at fixed length.

[35%]
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Fig. 2

END OF PAPER
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ENGINEERING TRIPOS    PART IIB    2015 
 

MODULE 4A9  −  MOLECULAR THERMODYNAMICS 
 

ANSWERS 
 
 
1.  (a) (i) RT/2 
  (ii) RT 
 (b) (i) 195 W/m2  (depending on assumptions) 
  (ii) 8550 W/m2 

 
2. (a) (i) 311.3 K  
  (ii) 8.45 kJ/kg (mean), 92.45 kJ/kg (random translational), 61.63 kJ/kg (rotational) 
 (b) (ii) 0.019 W m−1K−1 
 (c)  ; q1 = q2 = q3 = 0  

 

3.  (a)  
  
ε = n2h2

8π2I
 n = 0, 1, 2 ... 

     (b)  (i)   Z = 1+ e−ε/kT  
           (iii)  γ min = 1.340   

 
4.  (b) A = k / 2a 
 
 
A.J. White  &  J.B. Young 


