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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 25 April 2018 2 to 3.40

Module 4A9

MOLECULAR THERMODYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Information relevant to this question can be found on the next page.

(a) Define kinetic temperature and calculate its value for a sample of helium that
has an RMS molecular speed of 1250 ms−1. Under what circumstances is the kinetic
temperature equal to the thermodynamic temperature? [15%]

(b) Consider a cartesian coordinate system (x1, x2, x3). A perfect monatomic gas
flows such that at a particular point its density is ρ and the mean velocity components are
(u1, u2, u3). The peculiar velocity component Ci (i = 1,2,3) is defined by Ci = ci− ui
where ci is the corresponding absolute molecular velocity component.

(i) Starting from the integral expression for the net flux of a general quantity
Q, derive an expression in terms of ρ , ui, u j, Ci and C j for the net flux per unit
area and unit time of xi-direction momentum through a surface normal to the x j
direction. Describe the physical significance of each term in your expression. [15%]

(ii) Consider the averaged quantity Cn
i Cm

j , where m and n are integers. Determine
the conditions on m and n that make this quantity zero if the velocity distribution is
Maxwellian. Distinguish between cases when i = j and i 6= j. [10%]

(iii) Explain clearly why, in general, the molecular velocity distribution within a
laminar boundary layer cannot be Maxwellian. [5%]

(iv) By considering the normal stresses, show that the gas pressure may be written
in the form

p =
2
3

Etr

where Etr is the translational thermal kinetic energy per unit volume. [10%]

(c) Helium (specific gas constant R) flows through an adiabatic converging nozzle. At
a particular point on the nozzle centre line the speed of the flow is V and the temperature
is T . Using a kinetic theory approach, show that at this point the flowrate of molecular
energy in the streamwise direction per unit cross-sectional area is given by

ρV

(
BRT +

V 2

2

)

and determine the value of the coefficient B. Explain from a macroscopic viewpoint why
B is not equal to 3/2. [45%]
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Information for Question 1

The net flux per unit area and unit time of quantity Q (measured per molecule) in the x j
direction is given by

FQ =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

Qc j f (c1, c2, c3)dc3dc2dc1

where c1, c2 and c3 are the absolute molecular velocity components.

The Maxwellian velocity distribution for a gas at temperature T and with specific gas
constant R is given by

f (c1, c2, c3) =
n

(2πRT )3/2
exp

{
−(c1−u1)

2 +(c2−u2)
2 +(c3−u3)

2

2RT

}

where n is the number density of molecules and ui (i = 1,2,3) is the average value of ci.
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2 (a) Use a ‘mean free path’ kinetic theory model to show that the thermal
conductivity k of a monatomic perfect gas can be expressed as

k = βρCλR

where β is a constant, ρ is the gas density, C is the mean peculiar molecular speed, λ

is the mean free path and R is the specific gas constant. Obtain a value for the constant
β and explain how and why it differs from the value that would be obtained from more
detailed solutions of the Boltzmann equations.

It may be assumed that the number of molecules incident per unit time on one side of a
plane surface of unit area is given by nC/4 where n is the number density of molecules. [35%]

(b) For argon gas the measured value of k at 1 bar and 300 K is 0.0178 Wm−1K−1.
Explaining clearly your reasoning, estimate its value at 0.1 bar and 400 K. [20%]

(c) With the aid of a suitable sketch, describe how you would expect the mean free path
to be affected by intermolecular forces. Hence explain whether the real value of k for
argon at 0.1 bar and 400 K is likely to be higher or lower than your estimate in part (b). [15%]

(d) Two parallel plates of infinite extent are placed a distance 1 mm apart. One plate is
maintained at 300 K and the other at 500 K. The space between the plates is filled with
stationary argon gas at 0.1 bar. The approximate Knudsen number for these conditions is
Kn≈ 0.001. Using an appropriate theory, giving your answers to three significant figures,
determine the heat transfer rate per unit area between the plates for the following cases:

(i) assuming a constant value of k as determined by your estimate in part (b); [10%]

(ii) accounting for variations in k, but neglecting the effect of intermolecular
forces. [20%]
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3 (a) The Helmholtz function is defined as F = U − T S, where U , T and S are
the internal energy, temperature and entropy respectively. Derive a partial differential
relationship between S, F and T for a system at constant volume. [15%]

(b) Given that F = −kT lnQ, where k is Boltzmann’s constant and Q is the system
partition function, show that the internal energy of a system is given by

U = kT 2
(

∂

∂T
lnQ

)
V

[15%]

(c) A small system comprises a single particle that can access two energy levels with
energies ε0 = 0 and ε1 = ε , and corresponding degeneracies g0 and g1. This system is in
thermal contact with a reservoir at constant temperature T .

(i) Derive an expression for the entropy of the system in terms of the quantities
k, T , ε , g0 and g1. [20%]

(ii) Derive an expression for the mean internal energy U of the system in terms
of the same quantities and sketch (U/ε) versus (kT/ε) for (g1/g0) = 0.1 and
(g1/g0) = 10. [25%]

(iii) Derive an expression for the constant volume heat capacity cv of the system
in terms of k, T , ε , g0 and g1. What is the limiting behaviour of cv at very low and
at very high temperatures? Sketch the heat capacity versus temperature. [25%]
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4 (a) Four different systems, A, B, C and D, can each exist in one of four states.
The probabilities of each of the states are given by the matrix

PA1 PA2 PA3 PA4

PB1 PB2 PB3 PB4

PC1 PC2 PC3 PC4

PD1 PD2 PD3 PD4


=



1
2

1
12

1
3

1
12

0 1 0 0

1
4 0 1

2
1
4

1
10

1
10

7
10

1
10


where, for example, PAi is the probablility of system A being in its i-th state. A fifth
system E is an isolated system at equilibrium and has N possible states.

(i) Rank the systems A to D from highest to lowest entropy. [15%]

(ii) Find the value of N (to the nearest whole number) for which system E would
have the same entropy as system A. [10%]

(b) A system that has Ω microstates with individual energies Ei (i = 1,2, ...,Ω)
and corresponding probabilities Pi is in thermal contact with an infinite reservoir at
temperature T . The Helmholtz function of the system is defined by F = U −T S, where
U is the average energy of the system and S is its entropy. Use the method of Lagrange
multipliers to show that minimising F results in

Ei + kT (1+ lnPi)+λ = 0 (i = 1,2, ...Ω)

where k is Boltzmann’s constant and λ is the undetermined multiplier. Hence determine
how Pi varies with Ei when the system is at thermal equilibrium with the reservoir. [25%]

(c) A particular system has Ω = 5 possible microstates with individual energies given
by E1 = E2 = ε and E3 = E4 = E5 = 2ε . The system is in thermal equilibrium with an
infinite reservoir such that its average energy is U = (6ε/5).

(i) Calculate the probabilities of the five individual states and determine the
temperature of the reservoir in terms of ε and Boltzmann’s constant, k. [30%]

(ii) Calculate the RMS fluctuation in system energy and express this as a fraction
of the average energy U . Comment on the result. [20%]

END OF PAPER
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MODULE 4A9  −  MOLECULAR THERMODYNAMICS  
 

Answers  
 

 
 
1. (a) 250.6 ms–1   (c) B = 5/2 
 
2. (a) β = 5/4  (b) 0.0206 Wm–1K–1  (d) i) 4.11 kW m–2 ii) 4.10 kW m–2 

 
4. (a) ii) N = 3  (c) i)  P1 = P2 = 2/5;   P3 = P4 = P5 = 1/15  ii) σE /U =1/ 3  
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