EGT3

**ENGINEERING TRIPOS PART IIB** 

Monday 18 April 2016

2 to 3.30

#### Module 4B13

### **ELECTRONIC SENSORS AND INSTRUMENTATION**

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

# STATIONERY REQUIREMENTS

Single-sided script paper

# SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

**Engineering Data Book** 

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

- An ultrasonic Doppler system to monitor the velocity of cyclists in a velodrome comprises a pair of transducers positioned to view along a straight section of track. The transducers operate at 75 kHz and have the following physical properties: 5 cm diameter, electrical impedance for transmitting 150  $\Omega$ , electrical impedance for receiving 1 k $\Omega$ , conversion efficiency 15 %, beam cone half-angle 10° and acoustic impedance 1800 Rayls.
- (a) Sketch a block diagram of a system to produce an electrical signal at the Doppler frequency and determine the scale factor between the velocity and signal frequency.
- (b) If the average cross-section of a cyclist is  $0.5 \text{ m}^2$  and the transmitter transducer is driven with a signal of 48  $V_{pp}$ , what is the open-circuit amplitude of the raw signal detected by the receiver transducer when a cyclist is at a range of:
  - (i) 10 m and,
  - (ii) 20 m? [35%]

[25%]

(c) To compensate for variations in the speed of sound in air, a temperature sensor is employed to monitor the ambient air temperature. A 2 mA constant current is supplied to an NTC thermistor. The thermistor has a resistance of 1 k $\Omega$  at a temperature of 0 °C and a  $\beta'$  value of 3800.

Calculate the voltage across the thermistor at an air temperature of 20 °C and the non-linearity of the signal over the range 10 °C to 30 °C. [25%]

(d) An alternative Doppler system has been proposed which uses a 24 GHz microwave radar module. How would the velocity scale factor of this module compare with that of the ultrasonic system, and which approach is likely to be most accurate? [15%]

State all assumptions and approximations made.

Density (kg m<sup>-3</sup>) Speed of Sound (m s<sup>-1</sup>) Attenuation (dB m<sup>-1</sup>) 1.2 340 0.25

Table 1: Physical properties of air

- 2 (a) Explain the concept of *surface micromachining* and describe the process steps required for the fabrication of relevant MEMS devices. When is monolithic integration of MEMS with CMOS electronics desirable?
  - [30%]
- (b) Explain the differences between operating a capacitive MEMS accelerometer in open-loop mode versus force-feedback mode. [15%]
- (c) A single-axis acceleration sensor comprises a rectangular section silicon proof mass of 2  $\mu g$  suspended on spring beams at each corner, providing a total spring constant along the sensing axis of 10 N m<sup>-1</sup>. The proof mass carries 100 sets of inter-digitated electrodes with equal width and gaps of 1  $\mu m$  and lengths of 600  $\mu m$ . The out-of-plane thickness of the electrodes is 7  $\mu m$ .
  - (i) Calculate the resonant frequency of the sensor and the open-loop deflection of the proof mass under an acceleration of 20 m s<sup>-2</sup>. [20%]
  - (ii) If half of the capacitor electrodes are used for sensing and half are used for force-feedback, calculate the feedback voltage applied when the sensor experiences an acceleration of 20 m s<sup>-2</sup>. [20%]
  - (iii) By how much does each force-feedback capacitor electrode bend by (i.e. tip deflection relative to proof mass) for the accelerometer conditions in (ii) above? [15%]

State all approximations and assumptions made.

- 3 An infra-red pyrometer system to provide thermal images of the outside of the International Space Station contains a  $100 \times 100$  array of micro-machined thermocouples, on a substrate with outline dimensions of 5 mm  $\times$  5 mm. The thermocouple array is positioned 10 cm behind a ZnSe lens of diameter 5 cm.
- (a) What is the maximum change in total infra-red power falling on the sensor array when the system views large panels, with an emissivity of 0.5, over a temperature range of  $\pm$  100 °C?

[25%]

[10%]

[20%]

- (b) Calculate the field of view of the thermal camera at a range of 10 m, and estimate the minimum size of surface thermal features which could be reliably imaged.
- (c) The thermocouple sensor array has a total mass of 1 mg and is fabricated from thin Ni/Cr metal alloy films, separated from a large base-plate by a low density polymer foam insulation layer 20  $\mu$ m thick with a thermal conductivity of 0.025 W m<sup>-1</sup> K<sup>-1</sup>. The metal films have a Seebeck coefficient of 50  $\mu$ V K<sup>-1</sup> and a specific heat capacity of 450 J kg<sup>-1</sup> K<sup>-1</sup>.
  - (i) What is the thermal rating for the elements, and what is the difference in raw voltage signals when viewing areas at 0 °C and 10 °C?
  - (ii) What is the response bandwidth and rise-time of the thermal sensor array? [20%]
- (d) Each thermocouple pixel in the array has an electrical resistance of  $1 \text{ k}\Omega$  and is connected to an operational amplifier, configured to give a gain of  $\times$  1000 by means of a  $1 \text{ M}\Omega$  feedback resistance. If the operational amplifier has an input noise current density of 0.3 pA  $\text{Hz}^{-1/2}$  and a noise voltage density of  $1 \text{ nV Hz}^{-1/2}$ , what is the minimum thermal temperature difference at around 0 °C which may be detectable at the maximum image frame rate, if the camera ambient temperature is also 0 °C?

State all approximations and assumptions made.

- A general purpose laboratory current probe, for measuring currents in cables fed through the central hole of a toroid arrangement, utilises a combination of 3 sensing techniques integrated into a single sensor head. This arrangement allows a single instrument to measure currents over a wide range of magnitude and frequency. The toroid comprises a 25 mm mean diameter ring of high permeability ferrite, into which a 0.25 mm slot has been cut to house a Hall effect sensor element. The cross-section of the toroid ring is 80 mm<sup>2</sup> and the ferrite material has a relative permeability of 7500. In addition a winding of 250 turns of wire is wound around the toroid core section, to allow the sensor to operate in induction or flux-gate modes.
- (a) Describe, including a schematic block diagram, the basic operating principles of a flux-gate magnetometer.
- (b) When the sensor is being used in flux-gate mode, with the same coil providing both drive and pick-up functions, derive the responsivity of the current sensor when operating with a gating drive frequency of 10 kHz. [25%]

[20%]

- (c) When the sensor operates as an induction coil, derive the relationship between the voltage induced across the coil terminals and the current carried in the cable under test. [15%]
- (d) For larger currents, the sensor signal is derived from the Hall effect element; comprising a slice of silicon with dimensions of 0.5 mm × 0.5 mm × 0.01 mm, excited by a 5 Vdc supply. What is the amplitude of the Hall sensor output signal when the test cable carries a current of 20 A?

  [20%]
- (e) In order to achieve a flat frequency response over a wide bandwidth, what type of circuitry would be required to process the induction coil signal, and what cross-over frequency should be used when combining the Hall effect and induction coil signals together into a single output signal for the current probe?

  [20%]

State all assumptions and approximations made.

Note: the carrier mobility in  $Si = 0.16 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$  and the demagnetising factor for a circulating magnetic field around a toroid ring is negligible.

**END OF PAPER** 

Page 5 of 6

# THIS PAGE IS BLANK

### 4B13 2016 - Numerical answers

- 1 (a) 441 Hz/ms<sup>-1</sup>
  - (b) 10 m: 2.5 mV or 5 mV open cct., 20 m: 0.36 mV or 0.72 mV open cct.
  - (c) 38 % non-linearity from gradient at 10 °C, or 4.7 % from mid-range gradient
  - (d) 160 Hz/ms<sup>-1</sup>
- 2 (c)(i) 11.25 kHz, 4 nm
  - (c)(ii) Csense = Cforce = 1.86 pF, Vfeedback = 0.207 V
  - (c)(iii) 0.26 µm
- 3 (a)  $0.643 \mu W$  (round pixels) or 818  $\mu W$  (square pixels)
  - (b) target area 0.5 m across minimum features 5 mm across
  - (c)(i) 32 °C/W, 48 nV (or 61 nV)
  - (c)(ii) 11 Hz
  - (d) 13.4  $\mu$ Vrms noise, ~ 2 °C detectable
- 4 (b) 1.93 V/A
  - (c)  $6.06 \times 10^{-4} f_{\rm I} I$
  - (d) 20 A  $\rightarrow$  0.0967 T in air gap, 77.4 mV
  - (e)  $\sim 20 \text{ kHz cross-over freg.}$