EGT3
ENGINEERING TRIPOS PART IIB

Monday 20 April 2015
2 to 3.30

Module 4B21

ANALOGUE INTEGRATED CIRCUITS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Attachment: 4B21 Analogue Integrated Circuits data sheet (2 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version AN/2

1 (a) With the aid of one of more circuit schematics, describe the operating principle of a current mirror. State one application of the current mirror in an amplifier circuit.
(b) The circuit shown in Fig. 1 is an integrated MOS current mirror. The transistors in the circuit have the following parameters: $(W / L)_{Q 1}=50 \mu \mathrm{~m} / 5 \mu \mathrm{~m},\left|V_{A 2}\right|=\left|V_{A 1}\right|=200 \mathrm{~V}$, $V_{t}=1 \mathrm{~V}, \mu_{n} \cdot C_{o x}=20 \mu \mathrm{~A} \cdot \mathrm{~V}^{-2}$ and with a reference current of $100 \mu \mathrm{~A}$. Assuming that there are no channel length modulation effects:
(i) what is the value of $V_{G S}$,
(ii) what is the lowest possible value of V_{o} for the mirror to supply a constant current output,
(iii) show that, if $V_{o}=V_{G S}$, then $\frac{I_{o}}{I_{\mathrm{REF}}}=\frac{(W / L)_{Q 2}}{(W / L)_{Q 1}}$,
(iv) what is the output resistance of the current mirror at $I_{o}=100 \mu \mathrm{~A}$.
(c) If the output voltage increases by 20% from its value in part (iii) at $I_{o}=100 \mu \mathrm{~A}$, what will be the corresponding change in output current? Discuss the physical implications of your result.

Fig. 1

Version AN/2

2 (a) What is a multi-stage amplifier?
(b) Explain why multistage amplifiers are necessary from the standpoint of circuit characteristics.
(c) The two-stage CMOS op-amp in Fig. 2 is fabricated in a $0.18 \mu \mathrm{~m}$ technology having $k_{n}^{\prime}=4 k_{p}^{\prime}=400 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=-V_{t p}=0.4 \mathrm{~V}$. With A and B grounded, perform a DC design that will result in each of Q1, Q2, Q3 and Q4 conducting a drain current of $200 \mu \mathrm{~A}$. Design so that all transistors operate at 0.2 V overdrive voltage. Assume that the current through Q6 and Q7 is $2 \mathrm{I}_{\text {REF }}$.
(i) Specify the W/L ratio in tabular form required for each MOSFET.
(ii) What is the DC voltage at the output ideally?
(iii) Calculate the input common mode range.
(iv) Find the allowable range of the output voltage.
(d) With $v_{A}=v_{i d} / 2$ and $v_{B}=-v_{i d} / 2$, find the voltage gain $v_{o} / v_{i d}$. Assume an Early voltage of 5 V .

Fig. 2

Version AN/2

3 (a) Name three sources of noise that are commonly found in integrated circuit components.
(b) What is meant by the noise figure of an amplifier and describe how you would measure it.
(c) A parallel combination of identical resistors are connected between the input and ground terminals of a low noise amplifier. The output of the amplifier has a flat spectrum with value $-100 \mathrm{~dB} / \mathrm{Hz}$. If the voltage gain of the amplifier is 1000 , calculate the resistor values. In your calculations, assume that the amplifier is ideal (i.e., noiseless).
(d) A filter or network has an equivalent noise bandwidth B, which can be stated as:

$$
B=\frac{1}{\left|A_{0}\right|^{2}} \int_{0}^{\infty}|A(f)|^{2} d f
$$

where A_{o} denotes the transmission (voltage or current) magnitude, $A(f)$ the transfer function, and f the frequency. The above equation yields the same results as the actual non-ideal bandwidth the filter or network has in practice.

For the single-pole filter shown in Fig. 3, show that the noise equivalent bandwidth B is

$$
B=\frac{\pi}{2} f_{o}
$$

where f_{o} is the -3 dB bandwidth $1 /(2 \pi R C)$. In calculating B, you can use the following relation,

$$
B=a^{2} \int_{0}^{\infty}\left(a^{2}+b^{2}\right)^{-1} d b=a \int_{0}^{\frac{\pi}{2}} d q
$$

where q is a dummy variable.

Fig. 3
Page 4 of 6

4 (a) Explain how the design principle of the current-steering circuit differs from that of a current mirror.
(b) The current-steering circuit shown in Fig. 4 is fabricated in a CMOS technology for which $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=80 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.6 \mathrm{~V}, V_{t p}=-0.6 \mathrm{~V}$, and the Early voltages are $V_{A n}{ }^{\prime}=10 \mathrm{~V} / \mu \mathrm{m},\left|V_{A p}{ }^{\prime}\right|=|12| \mathrm{V} / \mu \mathrm{m}$. If the channel length L of all devices is $0.8 \mu \mathrm{~m}$, design the circuit so that $I_{\text {REF }}=20 \mu \mathrm{~A}, I_{2}=100 \mu \mathrm{~A}, I_{3}=I_{4}=20 \mu \mathrm{~A}$ and $I_{5}=$ $50 \mu \mathrm{~A}$. Use minimum possible device widths needed to achieve proper operation of the current source Q_{2} for voltages at its drain as high as +1.3 V and proper operation of the current $\operatorname{sink} \mathrm{Q}_{5}$ with voltages at its drain as low as -1.3 V .
(i) Specify the widths of all devices and the value of R.
(ii) Find the output resistance of the current source Q_{2}.
(iii) Find the output resistance of the current $\operatorname{sink} \mathrm{Q}_{5}$.

Fig. 4

Version AN/2

5. Consider the circuit of Fig. 5, in which an NMOS transistor M1 is connected in a circuit designed to provide a reference voltage $V_{R E F}$.
(a) Derive an expression relating $V_{\text {REF }}$ with the drain current I, the transistor parameters and other circuit constants.
(b) For transistor M1, the channel dimensions W and L are chosen as $40 \mu \mathrm{~m}$ and $4 \mu \mathrm{~m}$, respectively, $V_{t}=+1 \mathrm{~V}$, and $k^{\prime}=20 \times 10^{-6} \mathrm{AV}^{-2} . V_{D D}$ and $V_{S S}$ are 6 V and 0 V respectively.

Deduce a suitable value for R if $V_{R E F}$ is to be 2 V , and determine the drain current I.
(c) What is meant by the following terms in the context of the performance of voltage references, and why are they important?
(i) Power supply sensitivity.
(ii) Fractional temperature coefficient.
(d) Write a short account of the approaches available to the CMOS IC designer for generating stable reference voltages for use in integrated circuit design. Your account should mention power consumption, stability, area occupied, and any other factors you consider to be important.

Fig. 5

END OF PAPER

Version AN/2

FORMULA SHEET

Bipolar Junction Transistors:
$i_{C}=\alpha i_{E} \quad i_{C}=\beta i_{B} \quad i_{B}=(1-\alpha) i_{E} \quad i_{E}=(\beta+1) i_{B}$
$\beta=\frac{\alpha}{1-\alpha} \quad \alpha=\frac{\beta}{\beta+1} \quad V_{T}=\frac{k T}{q}=25 \mathrm{mV}$ at 300 K
$g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad r_{o}=\frac{V_{A}}{I_{C}}$

MOSFETs:
$i_{D}=K\left[2\left(v_{G S}-V_{t}\right) v_{D S}-v_{D S}{ }^{2}\right]$
$K=\frac{1}{2} \mu C_{o x}\left(\frac{W}{L}\right)$
$i_{D}=K\left(v_{G S}-V_{t}\right)^{2}=\frac{k^{\prime}}{2}\left(\frac{W}{L}\right)\left(v_{G S}-V_{t}\right)^{2}$
$k^{\prime}=\mu C_{o x}$
$g_{m}=2 K\left(v_{G S}-V_{t}\right) \quad r_{o}=\frac{\left|V_{A}\right|}{I_{D}}$
Differential Amplifiers:
$v_{o}=A_{d} v_{d}+A_{c m} v_{c m}$
$C M R R=20 \log \left|A_{d} / A_{c m}\right|$
$A_{c m}=\frac{v_{o}}{v_{c m}}$
OR

$$
A_{c m}=\frac{\Delta R_{D}}{2 R} \quad A_{d}=\frac{\Sigma R_{C}}{\Sigma R_{E}}
$$

BJT small signal operation: $\quad i_{C 1} \approx \frac{\alpha I}{2}+\frac{\alpha I}{2 V_{T}} \frac{v_{d}}{2} \quad i_{C 2} \approx \frac{\alpha I}{2}-\frac{\alpha I}{2 V_{T}} \frac{v_{d}}{2}$

$$
R_{i d}=2(\beta+1)\left(r_{e}+R_{E}\right) \quad R_{E}=\text { emitter resistance }
$$

FET small signal operation: $\quad i_{D 1} \approx \frac{I}{2}+\left(\frac{I}{V_{G S}-V_{t}}\right) \frac{v_{i d}}{2} \quad i_{D 2} \approx \frac{I}{2}-\left(\frac{I}{V_{G S}-V_{t}}\right) \frac{v_{i d}}{2}$
Millers Theorem:

$$
C_{e q}=C_{b r i d g e}(1-K) \quad K \equiv \frac{V_{2}}{V_{1}}
$$

Thermal Noise:

$$
\left\langle v_{n}^{2}\right\rangle=4 k T B R \quad k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

Feedback Architectures and Properties:

	Series-Shunt	Series-Series	Shunt-Series	Shunt-Shunt
Feedback signal X_{f}	Voltage	Voltage	Current	Current
Sampled signal X_{0}	Voltage	Current	Current	Voltage
To find input loop, set 1	$\mathrm{V}_{\mathrm{o}}=0$	$\mathrm{I}_{0}=0$	$\mathrm{I}_{0}=0$	$\mathrm{V}_{0}=0$
To find output loop, set 1	$\mathrm{I}_{\mathrm{i}}=0$	$\mathrm{I}_{\mathrm{i}}=0$	$\mathrm{V}_{\mathrm{i}}=0$	$\mathrm{V}_{\mathrm{i}}=0$
Signal Source	Thevenin	Thevenin	Norton	Norton
$\beta=\mathrm{X}_{\mathrm{f}} / \mathrm{X}_{0}$	$\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{0}$	$\mathrm{V}_{\mathrm{f}} / \mathrm{I}_{0}$	$\mathrm{If}_{\mathrm{f}} / \mathrm{I}_{0}$	$\mathrm{If}_{\mathrm{f}} / \mathrm{V}_{0}$
$\mathrm{A}=\mathrm{X}_{0} / \mathrm{X}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{v}}=\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}$	$\mathrm{G}_{\mathrm{M}}=\mathrm{I}_{0} / \mathrm{V}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{I}}=\mathrm{I}_{0} / \mathrm{I}_{\mathrm{i}}$	$\mathrm{R}_{\mathrm{M}}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{i}}$
$\mathrm{D}=1+\beta \mathrm{A}$	$1+\beta \mathrm{A}_{\mathrm{v}}$	$1+\beta \mathrm{G}_{\mathrm{M}}$	$1+\beta \mathrm{A}_{\text {I }}$	$1+\beta \mathrm{R}_{\mathrm{M}}$
A_{f}	$\mathrm{A}_{\mathrm{v}} / \mathrm{D}$	$\mathrm{Gm}_{\mathrm{M}} / \mathrm{D}$	$\mathrm{Al}_{1} / \mathrm{D}$	$\mathrm{R}_{\mathrm{M}} / \mathrm{D}$
$\mathrm{R}_{\text {if }}$	$\mathrm{R}_{\mathrm{i}} \mathrm{D}$	$\mathrm{R}_{\mathrm{i}} \mathrm{D}$	$\mathrm{R}_{\mathrm{i}} / \mathrm{D}$	$\mathrm{R}_{\mathrm{i}} / \mathrm{D}$
R_{of}	$\mathrm{R}_{0} /\left(1+\beta \mathrm{A}_{v}\right)$	$\mathrm{R}_{0}\left(1+\beta \mathrm{G}_{\mathrm{M}}\right)$	$\mathrm{R}_{0}\left(1+\beta \mathrm{A}_{\mathrm{i}}\right)$	$\mathrm{R}_{0} /\left(1+\beta \mathrm{R}_{\mathrm{M}}\right)$
$\mathrm{R}^{\prime}{ }_{\text {f }}=\mathrm{R}_{\text {of }} \backslash \backslash \mathrm{R}_{\mathrm{L}}$	R' ${ }^{\prime}$ / ${ }^{\text {d }}$	$\mathrm{R}^{\prime}\left(1+\beta \mathrm{G}_{\mathrm{M}}\right) / \mathrm{D}$	$\mathrm{R}^{\prime}\left(1+\beta \mathrm{A}_{\mathrm{i}}\right) / \mathrm{D}$	R'/D

${ }^{1}$ This procedure gives the basic amplifier circuit without feedback but taking the loading of $\beta, \mathrm{R}_{\mathrm{L}}$, and R_{S} into account.

