
Version NAF/final

EGT3
ENGINEERING TRIPOS PART IIB

Monday 25 April 2016 2 to 3.30

Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4C9 datasheet (3 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Using indicial notation, prove the following identities, where a, b and c are
vectors, each a function of position x :

(i) if tensor a⊗b is symmetric, (a⊗b) · c = c · (a⊗b) ; [10%]

(ii) ∇× (∇×a) = ∇(∇ ·a)− (∇ ·∇)a ; [20%]

(iii)
∮
S

(a⊗b) ·n dS =
∫
V

[ b ·∇a+a(∇ ·b) ] dV ,

where S is a closed surface with unit normal n enclosing a volume V . [20%]

(b) Figure 1 shows the steady-state, plane strain extrusion of a ductile metal, to reduce
its thickness from 4h to 2h. Assume that the material has a shear yield strength k, and that
friction is negligible.

(i) Use the upper-bound method, with planes of tangential velocity discontinuity
as shown by dashed lines in Fig. 1, to calculate the dependence of the extrusion
force F per unit depth upon the variable x. Hence obtain the best upper bound. [40%]

(ii) Why is the above solution not exact? [10%]
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2 (a) The uniaxial tensile response of a linear viscoelastic material satisfies the
differential equation: σ(t) = Eε(t) + ηε̇(t) , where E and η are material parameters,
ε is the strain, ε̇ the strain rate, and t is time.

(i) Show that the creep compliance Jc(t) = ε(t)/σ0 (where σ0 is a constant
applied stress) is of the form:

Jc(t) = A
(

1− eBt
)

,

and derive expressions for the constants A and B. [20%]

(ii) Assuming the material to be initially stress free, and the Poisson’s ratio ν to
be time independent, the strain components εi j(t) resulting from an arbitrary stress
history σi j(t) are given by the 3D convolution principle:

εi j(t) = (1+ν)

t∫
0

Jc(t − τ)
∂σi j(τ)

∂τ
dτ −ν

t∫
0

Jc(t − τ)
∂σkk(τ)

∂τ
δi j dτ ,

where δi j is the usual Kronecker delta. A thin-walled sphere (radius R, wall
thickness h) of the viscoelastic material is subjected to an internal pressure p(t) = 0
for t < 0 and p(t) = ṗt for t ≥ 0, where ṗ is a constant. Derive an expression for
the rate of change of the radius, ∂R/∂ t. Sketch your solution, and mark on it the
equivalent result for a linear elastic material. [40%]

(b) (i) Explain what Drucker meant by the stability of an elastic-plastic solid. What
are the implications of stability upon the shape of the yield surface, and upon the
direction of plastic flow with regard to the yield surface? [20%]

(ii) Explain why the yield surface of a fully dense metal is insensitive to the
applied pressure, whereas the yield surface of a porous metal is pressure-dependent.

[20%]
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3 (a) A thin-walled tube has radius R, length L and wall thickness h. The material
is isotropic and linear elastic, such that the strain components εi j are related to the stress
components σi j by:

εi j =
1+ν

E
σi j −

ν

E
σkkδi j ,

where E is the Young’s modulus, ν is the Poisson’s ratio and δi j is the usual Kronecker
delta. The tube is subjected to an axial tensile force F and a torque T , and can be assumed
to be in plane stress.

(i) Derive an expression for the elastic strain energy of the tube as a function of
the axial strain ε11 and the engineering shear strain γ = 2ε12. [15%]

(ii) Given that the ends of the tube undergo a relative rotation θ = γL/R and a
relative axial displacement ∆ = ε11L, use the method of minimum potential energy
to derive equations relating ε11 and γ to the force F and torque T , the tube geometry
and material parameters. [20%]

(b) A thin-walled tube, with the same dimensions as in part (a), is now made from a
metal with Young’s modulus E, an initial uniaxial yield strength σY , and a constant post-
yield tangent modulus ET . It yields in accordance with J2 flow theory, with isotropic
hardening, such that the uniaxial stress σ versus strain ε relation obeys

ε =
σ

E
for 0 ≤ σ ≤ σY

ε =
σY
E

+
(σ −σY )

ET
for σ > σY .

The tube is again subjected to a combined axial force F and torque T , but now T = αRF
where α is a constant.

(i) Determine the yield torque TY under this combined loading. [25%]

(ii) Obtain the plastic strain components in the tube at T = 2TY . [40%]

END OF PAPER
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ENGINEERING TRIPOS PART IIB 

Module 4C9 Continuum Mechanics 

Data sheet 

Suffix notation 

A repeated suffix implies summation  

 i iaa e  i ia b a b   

 c a b  can be written as  i ijk j kc e a b  

𝑨 = 𝒂 ⊗ 𝒃  can be written as 𝐴𝑖𝑗 = 𝑎𝑖𝑏𝑗  

Kronecker delta:    ij =1 for i = j,  and ij = 0 for i j   

 Note that   ij i j  e e  

Permutation symbol:   1ijke    when , ,i j k  are in cyclic order 

   1ijke     when , ,i j k  are in anti-cyclic order 

   0ijke    when any indices repeat 

e    identity:    ijk ipq jp kq jq kpe e       

grad ,i i    e  

div ,i iv v v  

curl ,ijk k j ie v v v e  

Gauss’s theorem (the divergence theorem): 

∫
𝜕𝐴𝑖𝑗

𝜕𝑥𝑗
𝑉

𝑑𝑉 = ∮ 𝐴𝑖𝑗𝑛𝑗

𝑆

𝑑𝑆 

Stokes’s theorem: 

∫ 𝑒𝑖𝑗𝑘

𝜕𝐴𝑝𝑘

𝜕𝑥𝑗
𝑆

𝑛𝑖𝑑𝑆 = ∮ 𝐴𝑝𝑘

𝐶

 𝑑𝑥𝑘 
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Isotropic linear elasticity 

Equilibrium:   𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  ,   𝜎𝑖𝑗 = 𝜎𝑗𝑖 

Compatibility:  𝜀𝑖𝑗,𝑘𝑝 + 𝜀𝑘𝑝,𝑖𝑗 − 𝜀𝑝𝑗,𝑘𝑖 − 𝜀𝑘𝑖,𝑝𝑗 = 0 

Constitutive relationships: 𝜎𝑖𝑗 =
𝐸

(1+𝜈)
𝜀𝑖𝑗 +

𝜈𝐸

(1+𝜈)(1−2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗    

Lame’s constants:    𝜇 = 𝐺 =
𝐸

2(1+𝜈)
    ,   𝜆 =

𝜈𝐸

(1+𝜈)(1−2𝜈)
  

At equilibrium the potential energy Π is minimised, i.e.: 

𝛿Π = ∫ 𝛿𝑈𝑑𝑉

𝑉

− ∫ 𝑡𝑖
𝑒𝛿𝑢𝑖𝑑𝑆

𝑆

− ∫ 𝑏𝑖𝛿𝑢𝑖𝑑𝑉 = 0

𝑉

 

The strain energy density 𝑈 is given by:   𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
 

Definitions:  𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the infinitesimal strain tensor, 𝑏𝑖 is the body 

force vector, 𝑡𝑖
𝑒  is the external traction vector and 𝑢𝑖 is the displacement vector. 

Isotropic linear viscoelasticity 

Relaxation modulus, 𝐸𝑟(𝑡): 

if   ε(𝑡) = ε0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  σ(𝑡) = ε0𝐸𝑟(𝑡) 

Creep compliance, 𝐽𝑐(𝑡):  

if   σ(𝑡) = σ0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  ε(𝑡) = σ0𝐽𝑐(𝑡) 

The Laplace transforms of 𝐸𝑟(𝑡) and 𝐽𝑐(𝑡) are related by:   𝐸̅𝑟(𝑠) 𝐽𝑐̅(𝑠) =
1

𝑠2 

Boltzmann superposition principle:    

𝜎(𝑡) = ∫
∂𝜀(𝜏)

∂τ
𝐸𝑟(𝑡 − 𝜏)𝑑𝜏 + 𝜀(0)𝐸𝑟(𝑡)

𝑡

0

 

𝜀(𝑡) = ∫
∂𝜎(𝜏)

∂τ
𝐽𝑐(𝑡 − 𝜏)𝑑𝜏 + 𝜎(0)𝐽𝑐(𝑡)

𝑡

0

 

Correspondence principle:  in the Laplace domain, the viscoelastic solution 

corresponds to the elastic solution, with the substitution  𝐸 → 𝑠𝐸̅𝑟(𝑠)   
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J2 flow theory 

The von Mises effective stress is  

1/2
3

2
e ij ijs s

 
  
 

   

in terms of the deviatoric stress  
1

3
ij ij ij kks      

The von Mises effective strain rate is  

1/2
PL PL2

3
e ij ij  

 
  
 

  in terms plastic strain rate 
PL
ij  

 

Yield condition:  0ef Y     where Y is the current yield strength, equal to the uniaxial yield 

strength at a plastic strain of e .   

 

The plastic strain rate satisfies normality:  
PL 3

2

ij
ij e

e

s
 


     

where e
e

h


    and h is the slope of the uniaxial curve of stress versus plastic strain.  

 

Slip line field theory 

Hencky equilibrium equations:   

 2p k constant   on an  -line 

 2p k  constant   on a  -line 

 

Geiringer kinematic equations:  

 0du vd   on an  -line 

 0dv ud   on a  -line 

 where u and v are the components of velocity along the   and    lines, respectively. 
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