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ENGINEERING TRIPOS PART IIB

Tuesday 19 April 2016 2 to 3:30

Module 4F10

STATISTICAL PATTERN PROCESSING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A set of sensors are used to detect whether a signal is generated from class ω1 or
class ω2. Each sensor measures a different feature of the signal. For each class the feature
value is fixed. All the features are known to be independent. For all sensors the noise on
the measurement is Gaussian distributed with zero mean and variance σ2. For class ω1
the feature value for sensor s is µs1 and for class ω2 it is µs2. A generative classifier is to
be used to classify the source of the signal, the prior probabilities for the two classes are
equal.

(a) State Bayes’ decision rule for generative classifiers for binary classification tasks. [10%]

(b) Initially d sensors, numbered 1 to d, are used to determine the source of the signal.
The vector of d sensor measurements will be written as x.

(i) Derive an expression for a sensor measurement x that lies on the optimal
decision boundary. [20%]

(ii) Show that the minimum probability of error for this set of sensors, Pe, can be
expressed in the form:

Pe =
∫ c

−∞

N (z;0,1)dz

What is the value of c? [30%]

(c) To improve the accuracy of the classifier, the number of sensors is increased to 2d,
sensors numbered 1 to 2d.

(i) Derive an expression for the reduction in probability of error rate from
increasing the number of sensors. Can increasing the number of sensors increase
the probability of error? [15%]

(ii) Rather than using all 2d sensors, a subset of k sensors are to be selected for
use in the classifier. How can the optimal subset of sensors be selected? [15%]

(iii) In a practical system, where the parameters of the classifier need to be trained,
discuss the limitations of continually increasing the number of sensors. [10%]
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2 An M-component Gaussian mixture model with diagonal covariance matrices is
to be used as the probability distribution for a d-dimensional feature vector. There are
N independent training examples, x1, . . . ,xN , to estimate the model parameters. The
parameters of the model are to be estimated using Maximum Likelihood (ML) estimation.

(a) Find an expression for the log-likelihood of the training data in terms of the
component priors, c1, . . . ,cM, and the component parameters. [10%]

(b) Expectation-Maximisation (EM) is to be used to find the Gaussian component
means. The auxiliary function for this problem can be expressed as

Q(θ , θ̂) =
N

∑
i=1

M

∑
m=1

P(ωm|xi,θ) log(p(xi|ωm, θ̂))

where θ is the set of all the model parameters and θ̂ the parameters to be estimated.
Constant terms have been ignored in this expression.

(i) Show that the update formula for the mean of component ωm is

µ̂m =
∑

N
i=1 P(ωm|xi,θ)xi

∑
N
i=1 P(ωm|xi,θ)

[25%]

(ii) The diagonal covariance matrix for all components of the model are restricted
to be the same. Derive an expression to estimate the single covariance matrix Σ. [20%]

(c) The form of the model is now changed so that the means of all the components are
restricted to be the same, µ . Additionally the covariance matrices are scalar multiples of
a single, diagonal, covariance matrix Σ. Thus the mean for component m is µ and the
covariance matrix is amΣ.

(i) Derive the update formula for the value of am. Discuss any issues that need
to be considered when estimating am. [30%]

(ii) Discuss the differences between using this form of model compared to using
the form discussed in part (b). [15%]

Page 3 of 6 (TURN OVER



Version MJFG/4

3 The parameters of a discriminative classifier are to be trained using a quadratic
approximation to the error surface. The set of parameters associated with the classifier
are denoted as the vector θ . An iterative procedure is used to estimate the parameters
where at iteration τ +1

θ
(τ+1) = θ

(τ)+∆θ
(τ)

and θ (τ) is the estimate of the model parameters at iteration τ . The value of the cost
function with model parameters θ is E(θ).

(a) The following quadratic approximation is to be used to estimate the weights

E(θ)≈ E(θ (τ))+(θ −θ
(τ))′b+

1
2
(θ −θ

(τ))′A(θ −θ
(τ))

(i) By considering a second-order Taylor series expansion about the point θ (τ)

find expressions for b and A. [15%]

(ii) Derive an expression for the value of θ that will minimise this quadratic
approximation. Hence obtain an expression for ∆θ (τ). [25%]

(b) An alternative second-order approximation is to assume that all the elements of
θ are independent. Furthermore, for some scenarios it is only possible to compute the
gradient. Using this form of approximation, show that a suitable update for element i at
iteration τ + 1, using only the gradient at the current point, the gradient at the previous
point and the previous change, is

∆θ
(τ)
i =

 g(τ)i

g(τ−1)
i −g(τ)i

∆θ
(τ−1)
i

where

g(τ)i =
∂E(θ)

∂θi

∣∣∣∣
θ
(τ)

[35%]

(c) Compare the two forms of update rules derived in parts (a) and (b). You should
include a discussion of the practical issues and computational costs of the two approaches
as the number of parameters in the classifier gets large. [25%]
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4 A classifier is to be built for a K-class problem. There are n, d-dimensional, training
samples, x1, . . . ,xn, with class labels, y1, . . . ,yn. A 1-of-K coding for the class label is
used so that each training example, xi, has a K-dimensional vector, ti, associated with
it. Initially a single layer network with a soft-max activation function is used so that the
output for node j, φ j(x), is

φ j(x) =
exp(w′jx)

∑
K
k=1 exp(w′kx)

where the parameters of the classifier, λ , are w1, . . . ,wK .

(a) The parameters of the classifier, λ , are to be trained using the following criterion

L(λ ) =
K

∑
k=1

n

∑
i=1

tik log(φk(xi))

where tik is element k of vector ti.

(i) Why is this criterion appropriate for training this form of network? [15%]

(ii) Derive an expression for the derivative of L(λ ) with respect to w j. How can
this derivative be used to find the model parameters? [30%]

(b) A regularisation term is added to the criterion in part (a). The parameters are now
estimated based on the following function

F(λ ) = L(λ )−a
K

∑
k=1

w′kwk

where a is a fixed scalar value.

(i) Discuss why this form of expression may yield an estimate of λ that
generalises better. How does the value of a influence the estimate of λ? [15%]

(ii) Derive an expression for the derivative of F(λ ) with respect to w j. [15%]

(c) Instead of adding a regularisation term, an additional layer is added to the network
between the input and the existing layer. This additional layer has a linear activation
function, φ(x) = x. The number of nodes in the additional layer is b.

(i) Discuss how the introduction of this additional layer might improve the
generalisation of the network, and any constraints on the value of b for this layer to
be useful. [15%]

(ii) Discuss how this additional layer will alter the training of the network, if a
similar criterion to part (a) is used. [10%]
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5 A classifier is required for a 2-class problem. There are a total of m training samples
x1 to xm with associated labels y1 to ym where yi ∈ {−1,1}.

(a) Initially a linear classifier is to be constructed. Contrast the training criterion used
to train a Support Vector Machine (SVM) classifier with the perceptron criterion when
the training data are linearly separable. How is the training criterion for the SVM altered
for the case when the training data are not linearly separable? [25%]

(b) Discuss how the use of kernel functions may be used to improve the performance
of an SVM classifier. What is the general form for an inhomogeneous polynomial kernel-
function? [15%]

(c) The training samples are 1-dimensional. The following mapping is proposed from
the 1-dimensional input-space to the (N +1)-dimensional feature-space:

Φ(x) =
[

1 exp(x) exp(2x) . . . exp(Nx)
]′

where x is the point in the input-space.

(i) Compare this form of feature-space with the feature-space associated with an
inhomogeneous polynomial kernel. [20%]

(ii) Show that the kernel-function, the dot-product of two vectors in the feature-
space, between two points xi and x j for this mapping may be expressed in the
following form

k(xi,x j) =
b− exp(a(xi + x j))

b− exp(xi + x j)

What are the values of a and b? [25%]

(d) Express the SVM classification rule using the kernel-function in its dual form which
is a function of the support vectors. How does the computational cost of classification vary
as the number of support vectors, S, the number of training samples, m, and N change? [15%]
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