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DEEP LEARNING AND STRUCTURED DATA

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Supplementary page: two extra copies of Fig. 1 (Questions 3 (c)(i) and 3 (c)(ii))
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A deep neural network (multi-layer perceptron) is to be trained for a K-class
problem, with a d-dimensional observation vector for each of the training samples. The
activation function for the output layer is a softmax activation function. Sigmoid activation
functions are used for all L hidden layers. The number of nodes for layer l is N(l). Thus
for hidden layer l of the network

z(l) = W(l)x(l); x(l+1) = φ

(
z(l)
)

; φ(z(l)) =


1/(1+ exp(−z(l)1 ))

...

1/(1+ exp(−z(l)
N(l)))


(a) How many parameters does the network have? How would this influence your
selection of L and N(l)? [15%]

(b) The network is to be trained using gradient-descent with supervised training data
D = {{x1,y1}, . . . ,{xn,yn}} where xi is the observation vector for the i-th sample and
yi ∈ {ω1, . . . ,ωK}. The model is to be trained using a cross-entropy cost function.

(i) Give an expression for the cross-entropy training criterion that can be used in
this case. You should clearly define all the terms in the expression. [15%]

(ii) Why is a softmax activation function a sensible choice for this task and
training criterion? Include the form of the activation function in your answer. [10%]

(iii) For a single layer l of the network derive the form of the derivative matrix
∂x(l+1)

∂x(l)
. The matrix should be ordered so that element (i, j) is ∂x(l+1)

j /∂x(l)i [25%]

(c) It is decided to make the network very deep, but restrict all the hidden layers to
have the same number of nodes, the same weights, W(l) = W, and have linear activation
functions, φ(z) = z. The derivative for the error function, E , with respect to the input to
layer l can be expressed as

∂E

∂x(l)
=

(
L

∏
j=l

∂x( j+1)

∂x( j)

)
∂E

∂x(L+1)

(i) Show that the following form of approximation can be derived when L >> l

∂E

∂x(l)
≈ η

L−l+1A
∂E

∂x(L+1)

What are the scalar η and the matrix A? Note A is not a function of l. You may
assume that W is of full rank. [25%]

(ii) Discuss the implications of Part (c)(i) for training deep neural networks. [10%]
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2 A set of linear classifiers, where each classifier has the form

y(x) = ax

is to be trained for a two-class problem. The d-dimensional features for the two classes,
ω1 and ω2, are known to be Gaussian distributed and the dimensions uncorrelated.
Initially, a dimension is selected to train one classifier. For this dimension class ω1 has a
mean of 0 and variance of 2, and class ω2 a mean of 2 and variance of 4. The classes are
known to have equal priors. There are N training examples equally split between the two
classes.

(a) What is the general form of Bayes’ decision rule for a two class problem? [10%]

(b) The linear classifier is to be trained using least squares estimation with target values
of 0 for class ω1 and 1 for class ω2. For N samples this criterion has the form

E(a) =
1
N

N

∑
i=1

(
yi(axi)

2 +(1− yi)(1−axi)
2
)

where yi is 1 if the observation belongs to class ω1 and 0 if it belongs to class ω2. A
very large number of training examples, N → ∞, are available to estimate the classifier
parameter. Calculate the optimal value of the classifier parameter, a, using this criterion. [30%]

(c) A threshold of 0.5 on y(x) is used to classify the data. Using the value of a
estimated in Part (b) calculate the probability of misclassifying a sample, Pe, in terms
of the Gaussian cumulative density function F(x) where

F(x) =
∫ x

−∞

N (z;0,1)dz [25%]

(d) Two additional classifiers are constructed using the same training criterion with
data from different dimensions of the feature vector. These classifiers yield individual
probability of errors P(2)

e and P(3)
e .

(i) Derive an expression for the probability of error when combining all three
classifiers in terms of the probability of errors of the individual systems. [15%]

(ii) Discuss whether you expect the probability of error obtained in Part (d)(i) to
be achieved with these classifiers in practice. Justify your answer. [10%]

(iii) How could a classifier with the lowest probability of error be obtained for this
task? [10%]
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3 (a) Describe the concept of kernel functions, indicating why they are useful for
a range of classification tasks. What is the role of slack variables in soft-margin support
vector machines (SVMs)? [15%]

(b) A soft-margin SVM y(x) = wTx+ b is trained on the dataset {(xn, tn)}Nn=1 with
xn ∈ Rd and tn ∈ {−1,1}. Let ξn be the slack variable for the n-th data point. Let
{ξ ?

n }Nn=1, w? and b? denote the soft-margin solution obtained using the objective function
1
2 ||w||

2 +C ∑
N
n=1 ξn with penalty constant C.

(i) What constraints must be satisfied by the soft-margin solution? [10%]

(ii) What is the value of ξ ?
n whenever (wT

?xn +b?)tn ≥ 1? Justify your answer. [10%]

(iii) What is the value of ξ ?
n whenever (wT

?xn +b?)tn < 1? Justify your answer. [10%]

(c) The classification dataset is shown in Fig. 1. Assume that you train a soft-margin
SVM with a linear kernel and penalty constant C on the value of the slack variables.

(i) Draw, on the attached copy of Fig. 1 (left-hand-side one), the decision border
obtained when C→ ∞. Highlight with a circle the data-points which are support
vectors. Justify your answer. [10%]

(ii) Draw, on the attached copy of Fig. 1 (right-hand-side one), the decision border
obtained when C ≈ 0. Justify your answer. [10%]

(iii) Discuss under which scenarios the values of C given in Parts (c)(i) and (c)(ii)
should be used. [10%]

Two copies of Fig. 1 are attached to the back of this paper. These should be detached and
handed in with your answers.
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Fig. 1
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(d) We define the function `(x) = [1− x]+, x ∈ R, where [·]+ returns the positive part
of its argument, that is, [z]+ = z if z > 0 and [z]+ = 0 if z < 0.

(i) Assume you want to solve the same soft max-margin problem as in Part (b).
Use `(x) and the solutions to Parts (b)(ii) and (b)(iii) to re-write the soft max-margin
objective into a new objective function that does not include ξ1, . . . ,ξN , only w and
b, with solution again given by w? and b? as in Part (b). [15%]

(ii) Would you be able to find w? and b? by optimizing the new objective function
obtained in Part (d)(i) by gradient descent? Justify your answer. [10%]
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4 A hidden Markov model (HMM) is to be used to model a sequence of T , d-
dimensional, vectors, x1, . . . ,xT . The HMM comprises 2 non-emitting states, s1 and sN ,
and N−2 emitting states, s2, . . . ,sN−1. The model always starts in non-emitting state s1
and finishes in state sN .

(a) Briefly describe the conditional independence assumptions for a HMM, and the
associated graphical model. [15%]

(b) Write an expression for the log-likelihood of the sequence, x1, . . . ,xT , in terms of
the state transition matrix A, and the state output probability distributions. [15%]

(c) The transition probabilities (and model structure) are assumed known, but the
state output distributions are to be trained using Maximum Likelihood (ML). The
auxiliary function (considering only a single sequence) to estimate the parameters using
Expectation Maximisation (EM) can be expressed as

Q(θ , θ̂) =C+
T

∑
t=1

N−1

∑
j=2

P(qt = s j|x1, . . . ,xT ;θ) log
(

p(xt |s j; θ̂)
)

where C is independent of the values of the parameters to be estimated. The following
variables are to be used in the EM process

α j(t) = log
(

p(x1, . . . ,xt ,qt = s j;θ)
)

; β j(t) = log
(

p(xt+1, . . . ,xT |qt = s j;θ)
)

(i) Briefly describe the meaning of each of the terms in the auxiliary function
above, and how this expression can be used to find the parameter values. [15%]

(ii) How can α j(t) and β j(t) be used to find P(qt = s j|x1, . . . ,xT ;θ)? [15%]

(iii) If the output probability distribution has the form

p(xt |s j;θ) = N (xt ; µ j,Σ j)

where µ j and Σ j are the mean and diagonal covariance matrix for state s j, derive
the update formula for the mean of the Gaussian for state s j. [25%]

(d) The set of output probability distributions of Part (c)(iii) is to be replaced by a single
deep neural network that predicts the mean vector and covariance matrix for each of the
output distributions. Briefly discuss the topology of the network, focusing on the input
and the output, that could be used in this situation. Do you expect this form of model to
perform better than the output distribution in Part (c)(iii)? [15%]

END OF PAPER
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Extra copies of Fig. 1. Left, copy for Question 3 (c)(i). Right, copy for Question 3 (c)(ii).


