EGT3
ENGINEERING TRIPOS PART IIB

Monday 29 April 20192 to 3.40

Module 4F14

COMPUTER SYSTEMS

Answer not more than two questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version AHG/3

1 (a) Explain what is meant by a pipelined datapath. What are pipeline hazards?
[20\%]
(b) The following extract of MIPS code increments all the elements of an n-element array by the contents of $\$ 10$. Each element of the array is four bytes. The starting address of the array is Astart and $4 n$ is in $\$ 11 . n$ is a multiple of four.

```
        add $9,$0,$0 # clear $9 to zero
Loop: lw $8,Astart($9) # $8 loaded with data at address $9+Astart
        add $8,$8,$10 # $8 loaded with $8+$10
        sw $8,Astart($9) # $8 stored at address $9+Astart
        addi $9,$9,4 # $9 loaded with $9+4
        bne $9,$11,Loop # jump back 4 instructions if $9#$11
```

The code is run on the datapath in Fig. 1. There is no data forwarding. Data hazards are resolved by stalling. Branches are assumed to be not taken, with pipeline flushing if they are taken. Calculate the minimum number of clock cycles required to execute the code:
(i) as is;
(ii) after adding a data forwarding unit to the pipeline;
(iii) after unrolling the loop by a factor of four (i.e. looping $n / 4$ times and incrementing four array elements each time around), and reordering/adjusting instructions as necessary;
(iv) after making the pipeline 2 -way superscalar, and reordering/adjusting instructions as necessary, with a restriction that only one load/store instruction can be issued at a time.

Each enhancement builds on the earlier ones, so you need to consider each new enhancement alongside all the previous ones. Be sure to justify your answer in each case.
(c) In (b), you calculated the minimum number of clock cycles required. Why might the actual number be higher? Which of the enhancements in (b) is most likely to increase the difference between the minimum and actual numbers? Justify your answer.

Fig. 1

Version AHG/3

2 (a) Explain why the inclusion of a cache, between the CPU and main memory, generally improves a computer's performance.
(b) Discuss briefly the relative advantages and disadvantages of direct mapped and set-associative caches.
(c) For a set-associative cache, sketch graphs showing how the miss rate and the miss penalty vary with (i) the block size and (ii) the degree of associativity.
(d) Figure 2 contains the obvious $\mathrm{C}++$ code to multiply two 1000×1000 matrices together. The int matrix c is multiplied by the int matrix b , and the result stored in the int matrix a. Figure 3 contains an alternative version of the code, which uses a technique called blocking to reduce the cache miss rate: in this example the blocking factor is 10 . Consider running the two code segments on a machine with a 1 KByte fully-associative data cache, 1 -word blocks and least recently used (LRU) block replacement.
(i) If an int requires 4 bytes of storage, how many matrix elements can fit in the data cache?
(ii) Estimate the total number of data cache misses for the version of the code in Fig. 2.
(iii) Estimate the total number of data cache misses for the version of the code in Fig. 3.

```
for (i=0; i<1000; i++)
    for (j=0; j<1000; j++)
            a[i][j] = 0.0;
for (i=0; i<1000; i++)
    for (j=0; j<1000; j++)
        for (k=0; k<1000; k++)
            a[i][j] += b[i][k] * c[k][j];
```

Fig. 2

```
for (i=0; i<1000; i++)
    for (j=0; j<1000; j++)
        a[i][j] = 0.0;
blockingFactor = 10;
jj = 0;
kk = 0;
while (jj < 1000) {
    while (kk < 1000) {
        for (i=0; i < 1000; i++)
            for (j=jj; j < jj + blockingFactor; j++) {
                    r = 0;
                    for (k=kk; k < kk + blockingFactor; k++)
                        r += b[i][k] * c[k][j];
                    a[i][j] += r;
            }
        kk += blockingFactor;
    }
    kk = 0;
    jj += blockingFactor;
}
```

Fig. 3

Version AHG/3

3 (a) Explain why the latency of the arithmetic logic unit (ALU) is of paramount importance in computer hardware design.
(b) Describe the operation of a single level, 4-bit carry-lookahead adder.
(c) Figure 4 shows a m-bit ripple-carry adder with one modification. The final carry out, cm , is selectable between either the standard ripple-carry signal or the initial carryin signal c0. The multiplexor is controlled by the combinatorial logic block CL, which distinguishes between two types of addition by examining the bits of a and b.
(i) An example of a Type 1 addition is $0100+1011+\mathrm{c} 0$, while examples of Type 2 additions are $0100+1001+\mathrm{c} 0$ and $0110+1011+\mathrm{c} 0$. By working through these examples by hand, and generalising, explain why for Type 1 additions cm is always equal to $\mathbf{c 0}$, whereas for Type 2 additions cm is always independent of c 0 . Deduce an expression for the combinatorial logic inside the block CL.
(ii) k of the circuits in Fig. 4 are chained together, by connecting the cm output of one to the c 0 input of the next, to form a n-bit adder $(n=k m)$ called a block-carryskip adder. If the latencies of the full adders, the CL block and the multiplexor are all T, derive an expression for the latency of the n-bit block-carry-skip adder. Hence, deduce the optimal block size m in terms of n.
(iii) Discuss briefly the relative advantages and disadvantages of block-carry-skip adders and carry-lookahead adders.

Fig. 4

END OF PAPER

Part IIB 2019

Module 4F14: Computer Systems

Numerical Answers

1. (b) (i) $17 n+5$ (ii) $9 n+2$ (iii) $17 n / 4+2$ (iv) $11 n / 4+2$
2. (d) (i) 256 (ii) $\sim 2 \times 10^{9}$ (iii) $\sim 2 \times 10^{8}$
3. (c) (i) Type $1=(\mathrm{a} 0 \oplus \mathrm{~b} 0) .(\mathrm{a} 1 \oplus \mathrm{~b} 1) \ldots(\mathrm{a}(\mathrm{m}-1) \oplus \mathrm{b}(\mathrm{m}-1))$
(ii) Overall latency is $(2 m+k) T$, optimal when $m=\sqrt{n / 2}$
