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CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.
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Single-sided script paper
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pages of this question paper until instructed to do so.
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1 (a) State carefully, but do not prove, the Small Gain Theorem for a system with
stable real-rational transfer function H(s). [15%]

(b) A control problem for a micro-mechanical system is modelled as in Fig. 1. It is
desired to control the position y(t) of the mass m from the position input x(t) through a
flexible spring element of stiffness k. The position of the mass cannot be directly measured
but a sensor for the spring force f (t) = k(x(t) − y(t)) is available.

(i) Show that the transfer function Tx̄→ f̄ is given by [15%]

G(s) =
kms2

ms2 + k
.

(ii) Explain why this system cannot be stabilised by proportional feedback. [15%]

(iii) The actuator dynamics relating true position x(t) to demanded position are
modelled by a first-order lag:

Ga(s) =
1

τs + 1
.

Using the Routh-Hurwitz criterion, or otherwise, show that the system including
actuator dynamics is stabilised by a proportional gain controller K(s) = α in the
standard negative feedback configuration if and only if α > 0. [15%]

(iv) The system is subject to uncertainty in the mass which is represented as
m = (1 + ∆)m0 where m0 is the nominal mass. Verify that the block diagram
arrangement of Fig. 2 specifies the correct transfer function Tx̄→ f̄ . [10%]

(v) It is desired to investigate the case where ∆ is taken to be frequency dependent.
Use the Small Gain Theorem to find a necessary and sufficient condition for the
feedback system of Fig. 2 to be stable for all stable ∆(s) satisfying |∆( jω)| < h for
some constant h > 0. [15%]

(vi) Show that the condition of Part (b)(v) implies h < 1 when K(s) = α > 0.
Compare this robustness guarantee to the result of Part (b)(iii). [15%]
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2 Figure 3 is the Bode diagram of a system with transfer function G(s) for which a
compensator K(s) is to be designed. It is known that the system has one pole satisfying
Re(s) > 0.

(a) (i) Sketch on a copy of Fig. 3 the phase plot of the stable and minimum phase
transfer function with the same gain (magnitude) plot as that of G(s). [10%]

(ii) Estimate the location of the right half plane pole and suggest the form of any
stable all-pass factor (if any). [10%]

(iii) Comment briefly on any limitations that may be experienced in the design of
K(s). [10%]

(iv) Determine the number of poles of G(s) at the origin using the Bode magnitude
plot. [10%]

(b) (i) Sketch the complete Nyquist diagram of G(s), paying close attention to any
required indentations of the Nyquist D-contour. [10%]

(ii) Explain carefully with reference to the Nyquist stability criterion why the
closed-loop system will not be stable with a constant controller K(s) = k, for any k
either positive or negative. [10%]

(c) (i) Find a K(s) = kK1(s)2, where K1(s) is a phase-lead compensator, for which
the closed-loop system is stable with a phase margin of at least 45◦. Show on another
copy of Fig. 3 the effect of this compensation on the open-loop transfer function. [20%]

(ii) Explain carefully with reference to a new Nyquist diagram why the system is
closed-loop stable. [10%]

(iii) Determine the smallest pure time delay which could make the system unstable
when placed in series with the controller. [10%]

Two copies of Fig. 3 are provided on separate sheets. These should be handed in with
your answers.
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3 (a) Consider a plant with transfer-function:

G(s) =
(a1s + 1)(a2s + 1) · · · (an−1s + 1)

bnsn + · · · + b1s + 1
=

a(s)
b(s)

where ai , 0 for all i, bn , 0 and b(s) has all its roots in Re(s) < 0.

(i) Find an expression for the initial slope of the step response of the plant. Hence
show that there is initial undershoot in the step response if and only if an odd number
of the ai are negative. [15%]

(ii) Suppose that ai < 0 for some i. By considering the definition of the Laplace
transform of the step response y(t), or otherwise, show that [10%]∫ ∞

0
y(t)et/ai dt = 0.

(iii) Deduce that, if one or more of the ai is negative, then there will always be at
least one t1 > 0 where y(t1) = 0. [10%]

(b) Let

G(s) =
(1 − s)2

s(s2 + 2s + 12)
.

(i) Sketch the root-locus diagram of G(s) for k > 0 and k < 0. [Hint: you may
use the fact that G′(s) = 0 at the four points s = −2,−1, 1, 6 without verifying this.] [20%]

(ii) Determine the value of feedback gain k for which a closed-loop pole is at
s = −1, and find the location of the other closed-loop poles at this gain. [15%]

(iii) Hence, or otherwise, design a two-degree-of-freedom control system for this
plant for which the transfer-function Tr̄→ȳ relating output to reference input is equal
to

R(s) =
(1 − s)2

(s + 1)3
.

[15%]

(iv) Without attempting to calculate it, provide an approximate sketch of the step
response of R(s)which indicates the main features that may be expected. State what
features of the step response are unavoidable in any allowed choice of R(s) satisfying
R(0) = 1. [15%]

END OF PAPER
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Extra copy of Fig. 3: Bode diagram for Question 2.
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Answers

2. (b)(ii) pole ≈ 1. Stable all-pass factor = e−sT , T = 0.06.

3. (a)(i)

a1a2 · · · an−1

bn

(b)(ii) k = 11/4, poles at −1,−1,−11/4.


