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EGT3
ENGINEERING TRIPOS PART IIB

Friday 29 April 2016 2 to 3.30

Module 4F2

ROBUST AND NONLINEAR SYSTEMS AND CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 An industrial process is modelled by the transfer function

G(s) = α
e−sD

s+1

where D ≥ 0 is a given transport delay and 1 ≤ α ≤ 2. In what follows you will design
proportional controllers K(s) = k that guarantee closed loop stability.

(a) Consider the closed loop in Figure 1.
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Fig. 1

(i) Compute the smallest γ1 > 0 such that sup
1≤α≤2

‖G‖∞ ≤ γ1. [20%]

(ii) Using the small gain theorem and the bound γ1, find the range of gains k that
guarantee asymptotic stability of the closed loop. [20%]

(b) Consider D = 0. For a more advanced design the uncertainty on the system is
modelled as a multiplicative uncertainty G(s) = G0(s)(1+∆) where G0(s) =

1
s+1 and

‖∆‖∞ ≤ 1.
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Fig. 2

(i) Determine ‖Tw→z‖∞ as a function of k, where Tw→z(s) is the nominal (i.e.
∆(s) = 0) transfer function relating w(s) to z(s) . [25%]

(ii) Using the small gain theorem, find the range of gains k that guarantee robust
stability. [20%]

(iii) Consider an extended set of perturbations ‖∆‖∞ ≤ ρ , where ρ > 1. Show that
for any ρ > 1 there exists a proportional gain k that guarantees robust stability. [15%]
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2 Consider the closed loop system in Figure 3. Let W1(s) and W2(s) be stable scalar
transfer functions. In what follows Ta→b(s) denotes the transfer function from a given
input ā(s) to a given output b̄(s).
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(a) Take ‖∆‖∞ ≤ 1 and W2(s) = 10. Suppose that ‖W2Td→y0W2‖∞ < 1.

(i) Show that K(s) guarantees robust stability for G(s) = (I +100∆(s))G0(s). [20%]

(ii) Show that K(s) guarantees nominal performance ‖Td→y0‖∞ < 1
100 and

‖Tr→e‖∞ > 99
100 . [20%]

(b) (i) Draw an equivalent block diagram to Figure 3 in which there is a “generalised
plant” P with inputs and outputs
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[20%]

(ii) Define the robust performance problem and briefly discuss a technique to
address it. [20%]

(iii) Take W1(s) = α > 0 and W2(s) = β > 0. Show that there is no controller K
that can achieve ‖Tw1→z1‖∞<1 and ‖Tw2→z2‖∞<1 if 1

α2 +
1

β 2 ≤ 1. [20%]

Page 3 of 6 (TURN OVER



Version RS/4

3 Consider the (positive or negative) feedback interconnection of a stable linear
system, with transfer function H(s), and a (saturation) static nonlinearity y = ϕ(u)
described by

ϕ(u) =


−1, u≤−1

u, −1≤ u≤ 1
+1, u≥ 1

(a) Suppose that H(s) = 2
s+1 . Determine the equilibria of the feedback system and their

stability, both in the positive and in the negative feedback configuration. Briefly discuss
the qualitative behaviour of both systems. [30%]

(b) Draw a phase-portrait of the positive feedback system for the transfer function

H(s) =
2

εs2 + s+1

where ε > 0 is a small parameter. Sketch on the phase portrait the stable manifold of the
unstable equilibrium and explain why it plays an important role in organizing the global
behaviour. [30%]

(c) Propose a candidate stable transfer function H(s) for the negative feedback system
to possess a limit cycle oscillation. Briefly explain how one could predict the period and
amplitude of this oscillation. [20%]

(d) Generalize your analysis in (a) to an arbitrary stable transfer function H(s) that
satisfies H(0)> 1. [20%]

Page 4 of 6



Version RS/4

4 Consider the (Duffing) nonlinear second-order mechanical model

mẍ+
dE
dx

+ kẋ = u (1)

for the potential energy E(x) = x4
4 +α

x2
2 , where u is an external force. The total energy

of the free (i.e. u = 0) system is

V (x, ẋ) = E(x)+
mẋ2

2
(2)

(a) Evaluate the time-derivative of V along the trajectories. [10%]

(b) Sketch plots of the potential energy for α ≥ 0 and for α < 0 and use these plots to
describe the behaviour qualitatively. [20%]

(c) Assume u = 0 and α ≥ 0. Prove that the equilibrium (x, ẋ) = (0,0) is Lyapunov
stable when k = 0 and asymptotically stable when k > 0. For k > 0, what is the basin of
attraction of the equilibrium? [20%]

(d) (i) Show that an output can be selected so that the mechanical system (1) is
passive when α ≥ 0. What is the physical interpretation of the storage function
and of the supply rate? [10%]

(ii) Show that the transfer function H(s) = kp +
ki
s defines a strictly passive

system. Discuss the implication of that property for feedback control of the Duffing
system. [10%]

(e) (i) Prove that the equilibrium (x, ẋ) = (0,0) is unstable when u = 0 and α < 0. [10%]

(ii) Sketch the phase portrait of the system near this unstable equilibrium. [10%]

(iii) Explain why this equilibrium is called a saddle point and why it plays an
important role for the global behaviour of the system when the damping coefficient
k > 0 is small. [10%]

END OF PAPER
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