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EGT3
ENGINEERING TRIPOS PART IIB

Monday 30 April 2018 2.00 to 3.40

Module 4F2

ROBUST & NONLINEAR CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Consider the closed loop system in Fig. 1 where G is the plant transfer function and
K is the controller transfer function. Assume that both transfer functions are in H∞.

(a) Using the block diagram in Fig. 1 show that[
I −K
−G I

]−1

=

[
(I−KG)−1 K(I−GK)−1

G(I−KG)−1 (I−GK)−1

]
.

(Hint: if needed, use the identities M(I−NM)−1 = (I−MN)−1M and (I−NM)−1 =

I +N(I−MN)−1M, where M and N are two generic matrices.) [15%]

(b) Show that if ‖KG ‖∞< 1 then

[
I −K
−G I

]−1

is in H∞. Is the closed loop system

internally stable for ‖ KG ‖∞< 1? Explain your answer. [25%]

(c) Consider the Bode diagrams in Fig. 2 representing the magnitude of plant G and of
three controllers K denoted respectively by K1, K2 and K3. Which controllers guarantee
nominal closed loop stability? Explain your answer. [20%]

(d) Using the small gain theorem, derive the condition for robust stability of the closed
loop system in Fig. 1 in the presence of an additive uncertainty ∆ on G. [15%]

(e) Consider any additive uncertainty ∆ on G such that ‖∆ ‖∞< b. For each of the
stabilizing controllers Ki found in (c), use the small gain theorem to find the largest b
such that robust stability is guaranteed. [25%]
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Fig. 1
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2 Consider the closed loop system in Fig. 3 defined by controller K, actuator
A, and plant P. The plant transfer function is P(s) = 1

s . The actuator model is
A(s) = A0(s)(1+ ∆̄(s)), which consists of a nominal transfer function A0(s) =

1
s+2 and a

multiplicative uncertainty on the input ∆̄(s). K(s) = k > 0 is a proportional controller.

(a) Suppose that A(s) = 1
s+a where 1 < a < 2. Show that ∆̄(s) = ∆(s)W (s) for

W (s) = 2
s+2 and ‖ ∆(s) ‖∞< 1. Draw a new block diagram representing the closed loop

system with multiplicative uncertainties on the actuator. [20%]

(b) Show that any control gain k > 0 guarantees that the nominal transfer functions
Tr→e(s), from the reference r to the error e, and Td→y(s), from the disturbance d to the
output y, are in H∞. [20%]

(c) Consider the multiplicative uncertainty in part (a). Suppose that the nominal closed
loop system is internally stable. Using the small gain theorem, derive the range of positive
gains k that guarantee robust stability. [20%]

(d) Consider any frequency ω > 0 rad/s. Show that, for a sufficiently large k, nominal
tracking improves at frequency ω . What is the effect of large gains k on the robustness of
the system to multiplicative uncertainties on the plant output? Explain your answer. [20%]

(e) Define the robust performance problem. Introduce the notion of generalized plant
and briefly discuss a technique to address the robust performance problem. [20%]
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Fig. 3
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3 (a) Explain what is meant by the following for a dynamical system with state
space representation ẋ = f (x):

(i) Stable equilibrium point;

(ii) Asymptotically stable equilibrium point;

(iii) Globally asymptotically stable equilibrium point;

(iv) Domain of attraction of an equilibrium point.

[20%]

(b) Describe Lyapunov’s indirect method for deducing stability properties of an
equilibrium point of a nonlinear system via its linearization. Explain also the limitations
of this method. [20%]

(c) Consider the system

ẋi =−αixi−
m

∑
j=1

f j(y j), i = 1, . . . ,n

ẏ j =−β jy j +
n

∑
i=1

gi(xi), j = 1, . . . ,m

where for all i, j we have that αi,β j are constants that satisfy αi ≥ 0 and β j > 0, f j and
gi are Lipschitz continuous functions that are non-decreasing, f j(0) = 0, f j(y j)y j > 0 for
y j 6= 0, gi(0) = 0, gi(xi)xi > 0 for xi 6= 0.

(i) Using the function

V (x,y) =
n

∑
i=1

∫ xi

0
gi(z)dz+

m

∑
j=1

∫ y j

0
f j(z)dz

show that the origin is an asymptotically stable equilibrium if it is the only
equilibrium point of the system. [45%]

(ii) Is the origin also globally asymptotically stable? Provide a justification to
your answer. [15%]
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4 (a) Find the describing function for the nonlinearity given by

f (e) =

0 |e| ≤ δ ,

e |e|> δ

where δ ≥ 0 is a constant. [40%]

(b) The nonlinearity f (e) is connected in negative feedback with a linear system with
transfer function

G(s) =
α

(2s+1)2

where α > 0 is a constant. Use the circle criterion to find the values of α > 0 for which
stability of the feedback system is guaranteed. Discuss if the circle criterion implies that
the feedback system will be unstable when α takes values outside this range. [20%]

(c) Using the fact that the describing function derived in part (a) is less than or equal to
1, explain whether the describing function method predicts the existence of a limit cycle
for the feedback system described in (b). [20%]

(d) Consider now the negative feedback interconnection of f (e) with a linear system
with transfer function

G(s) =
β

(s+1)3

where β > 0 is a constant. Also let δ = 0 in f (e). Find the value of β > 0 for which the
feedback system has a steady-state oscillation. [20%]

END OF PAPER
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