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Module 4F3

AN OPTIMISATION BASED APPROACH TO CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4F3 data sheet (two pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 The motion of an inkjet printer head is to be optimised. The printer head moves
accordingly to the law

xk+1 = xk + uk

where xk is the current position, xk+1 is the next position, and uk is the o�set.

(a) Let r be the desired target position and consider the finite horizon cost

J1 = (xT � r)2 +
T�1’
k=0

(xk � r)2 for T = 2 .

(i) Using dynamic programming, find the optimal cost J⇤1 , optimal trajectory
x⇤k , and optimal (unconstrained) input sequence uk , from the generic initial state
x⇤0 = x0. [30%]

(ii) Explain why the modified cost

J2 = (xT � r)2 +
T�1’
k=0

�
(xk � r)2 + u2

k
�

for T = 2

gives a smoother optimal motion x⇤k than J1. Does J2 guarantee that x⇤T = r? [10%]

(b) Consider the cost
J3 = (xT � r)2 for T = 2 .

Find the optimal input sequence constrained to �1  u⇤k  1, optimal trajectory x⇤k , and
optimal cost J⇤3 , for the initial condition x0 = 0 and target r = 2. [30%]

(c) A simple physical model of the printer head is given by the dynamics of a frictionless
mass of unit weight, with position p, and velocity v

€p(t) = v(t) €v(t) = u(t)

where u is the external driving force. An appropriate cost is

J4 =
π

1

0
(p(t) � r)2 + u(t)2 dt .

By formulating the problem of minimising this cost as a linear quadratic regulator (LQR)
problem, find the optimal (unconstrained) control u(t). [30%]
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2 (a) Consider the first order system with transfer function

G(s) =
1

s + 1
.

(i) Describe the two methods of computing the H1 norm of a stable system, one
in the frequency domain and the other in the time domain / state space. [15%]

(ii) Compute the H1 norm of G(s). [15%]

(b) Consider the associated generalised plant P1 with realisation

€x = �x + u + w1, y = x + w2, z =
h
x
u

i

where w1 and w2 represent additive noise on state x and measured output y, respectively.
z is the performance output and u is the control input.

(i) Define the H1 optimal control problem for the generalised plant P1. [10%]

(ii) Derive state-feedback and output-feedback H1 controllers which guarantee
that the closed loop transfer function from w to z has H1 norm smaller than or equal
to 1. [40%]

(c) Consider the simplified generalised plant P2 with realisation

€x = �x + u + w, z = y = x

where w represents additive noise. Using linear matrix inequalities, describe how to find
the state-feedback H1 controller u = K x which minimises the H1 norm of the closed
loop transfer function from w to z. [20%]
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3 (a) List some advantages and disadvantages of predictive control, referring to one
or more di�erent application areas in your answer. [25%]

(b) Write down the standard form of a quadratic programming (QP) optimisation
problem. [10%]

(c) Consider a linear discrete time dynamical system

xk+1 = Axk + Buk

Predictive control is to be applied to this system with a receding horizon cost function

k+N�1’
i=k

⇣
xT

i+1Qxi+1 + uT
i Rui

⌘

and constraints
|uk |  U

for some U and all k. Assuming that the full state vector xk can be measured at each step,
show how the problem of choosing the control input at each step can be written as a QP
problem. [40%]

(d) Explain how, and why, the cost function and constraints should be modified to ensure
stability and feasibility. Equations are not required. [25%]
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4 Consider the following three control problems. For each problem choose a suitable
algorithm from the areas of Predictive Control, Reinforcement Learning or Optimal
Control (a di�erent algorithm for each problem). In each case describe the algorithm and
its application to the problem in detail, explaining why it is appropriate to the problem.
Included in your answers should be definitions of the terms value function, policy iteration,
value iteration and the action-value function, Q. You may make reasonable assumptions.

(a) Control Problem 1: Determining the minimum fuel required, and the corresponding
throttle settings to land a spacecraft on the surface of the moon from orbit. An accurate
model of the spacecraft is available. You may assume that the spacecraft moves in one
orbital plane (i.e. that the desired landing point is directly below the spacecraft at one point
in its orbit) and that the orientation of the spacecraft can be controlled instantaneously. [33%]

(b) Control Problem 2: Maintaining straight and level flight for a damaged aircraft,
where several control surfaces are damaged or unavailable but an accurate linearised
mathematical model is available for both the aircraft and the available controls and it is
known which controls are not available. [33%]

(c) Control Problem 3: An o�ine study into the possibility of controlling a heavily
damaged aircraft, including being able to execute turns, where several control surfaces
and one or more engines are unavailable, and parts of the wing are missing. An accurate
simulation environment is available, incorporating important nonlinear characteristics
from a detailed fluid dynamics model, and it is expected that an unconventional nonlinear
control strategy would be required. [34%]

END OF PAPER
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3: Optimal and Predictive Control

Data Sheet (available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =

Z T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-
Jacobi-Bellman PDE,

�
@V (x, t)

@t
= min

u2U

✓
c(x, u) +

@V (x, t)

@x
f(x, u)

◆
, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = x
T
Qx + u

T
Ru, and JT (x) = x

T
XTx, if X(t)

satisfies the Riccati ODE,

�Ẋ = Q+XA+ A
T
X �XBR

�1
B

T
X, X(T ) = XT ,

then Jopt = x
T
0X(0)x0 and uopt(t) = �R

�1
B

T
X(t)x(t).

2. For the discrete-time system satisfying xk+1 = Axk+Buk with x0 given and cost function,

J(x0, u0, u1, . . . , uh�1) =
h�1X

k=0

�
x
T
kQxk + u

T
kRuk

�
+ x

T
hXhxh,

if Xk satisfies the backward difference equation,

Xk�1 = Q+ A
T
XkA� A

T
XkB(R +B

T
XkB)�1

B
T
XkA,

then Jopt = x
T
0X0x0 and optimal control signal, uk = �(R+B

T
Xk+1B)�1

B
T
Xk+1Axk.
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3. For the system satisfying,

2

6666664

ẋ

z

y

3

7777775
=

2

6666664

A
⇥
B1 0

⇤
B2


C1

0

� 
0 0
0 0

� 
0
I

�

C2

⇥
0 I

⇤
0
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7777775

2
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w
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7777775
where

8
>>>>>>>>>><

>>>>>>>>>>:

(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimal H2 controller is given by,
"

ẋk

u

#
=

"
A� B2F �HC2 �H

F 0

#"
xk

y

#

where F = B
T
2 X , H = Y C

T
2 , and X and Y are stabilising solutions to

0 = XA+ A
T
X + C

T
1 C1 �XB2B

T
2 X (CARE)

and

0 = Y A
T + AY +B1B

T
1 � Y C

T
2 C2Y (FARE)

(b) The controller given by,

"
ẋk

u

#
=

"
Â� B2F �HC2 �H

F 0

#"
xk

y

#

where F = B
T
2 X , H = Y C

T
2 , Â = A + 1

�2B1B
T
1 X , and X and Y are stabilising

solutions to,

XA+ A
T
X + C

T
1 C1 �X(B2B

T
2 � �

�2
B1B

T
1 )X = 0

and

Y Â
T + ÂY +B1B

T
1 � Y

�
C

T
2 C2 � �

�2
F

T
F
�
Y = 0,

satisfieskTw!zk1  �.
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