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Module 4F5

ADVANCED COMMUNICATIONS AND CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper
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Attachment: 4F5 Advanced Communications and Coding data sheet (4 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) A discrete source emits independent and identically distributed (i.i.d.) binary
symbols with the distribution P(1) = 0.01, P(0) = 0.99.

(i) The symbols are taken fifty at a time, and a binary codeword is provided
for each sequence of fifty symbols containing two or fewer 1’s. Assuming that
all codewords have the same length, find the minimum length (in bits) required to
provide codewords for all sequences with two or fewer 1’s. [15%]

(ii) If we assign codewords as in (a)(i) above, calculate the probability of
observing a source sequence for which no codeword has been assigned. [15%]

(iii) What is the minimum expected number of bits per source symbol required by
any compression code which assigns a codeword to every source sequence? [5%]

(iv) Briefly describe how you would construct a compression code for which the
expected number of bits per source symbol is close to the minimum value in (iii).
The code should assign a unique codeword to every source sequence. Assume you
do not have to worry about the complexity of encoding and decoding. [20%]

(b) A discrete source emits n i.i.d. symbols from the set {a,b,c} with the distribution
P(a) = 1

2 , P(b) = P(c) = 1
4.

(i) Let (x1, . . . ,xn) be a sequence with k ‘a’ symbols, where k  n. What is the
probability of observing this sequence? [5%]

(ii) Let Ae,n denote the set of e-typical source sequences of length n. Using your
answer for (b)(i) above, describe precisely what an element in the set A0.05,20 looks
like. For example, could the sequence ‘aaabbbacabbaccacaacc’ be in this set?
Hint: The definition of Ae,n is given in the data sheet. [20%]

(iii) Use properties of typical sequences together with your answer for (b)(ii) to
show that [20%]

✓
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9

◆
211 +

✓
20
10

◆
210 +

✓
20
11

◆
29  220(1.5+0.05)
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2 Consider the four-symbol constellation {�3A,�A,A,3A}, shown in Fig. 1.

3A�3A A�A

Fig. 1

(a) Suppose that this constellation is used to signal over the discrete-time Additive
White Gaussian Noise (AWGN) channel

Y = X +N

where the noise N is distributed as N (0, N0
2 ), i.e., it is Gaussian with zero mean and

variance N0
2 .

(i) Assuming that all the constellation symbols are equally likely, what are the
decision regions for the optimal detector? [10%]

(ii) Compute the average probability of detection error for the decision regions
obtained in (i). Your answer should be in terms of the ratio A2

N0
and the Q-function. [10%]

(iii) Find the decision regions for the optimal detector when the constellation
symbols are chosen according the following probability distribution:
P(X =�3A) = P(X = 3A) = 1/6, and P(X =�A) = P(X = A) = 1/3. [25%]

(iv) Compute the probability of detection error for the scenario in (a)(iii) above. [20%]

(b) Now suppose that the constellation in Fig. 1 is used to signal over the fading
channel Y = hX +N, where h ⇠ CN (0,1) and N ⇠ CN (0,N0) are complex Gaussian
random variables. Assume that the fading coefficient h is known at the receiver, and the
constellation symbols are equally likely.

(i) At the receiver, we project Y in the direction of h by multiplying it by h⇤
|h| , and

then perform detection. (h⇤ is the complex conjugate of h.) What is the probability
of detection error conditioned on h? [15%]

(ii) Use the approximation Q(x) ⇡ 1
2e�x2/2 for the Q-function, and compute the

probability of detection error averaged over all realisations of h. Note that the
probability density function of |h|2 is given by f|h|2(x) = e�x, x � 0. [10%]

(iii) Compare the average probability of error for the fading channel with the
probability of error for the AWGN channel in part (a). Explain qualitatively why
one decreases much more slowly than the other as A2

N0
increases. [10%]
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3 (a) An LDPC code is defined by the following parity-check matrix

H =

2

666666664

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0

3

777777775

A codeword of this code was transmitted over a binary erasure channel. There were five
erasures denoted by e , resulting in a received sequence

y = [ 0 e e 1 e 0 e 1 e ].

Determine the transmitted codeword. [20%]

(b) A binary LDPC code has edge perspective polynomials
8
<

:
l (x) = 0.5x2 +0.3x4 +0.2x5

r(x) = x5

(i) What is the rate of the code? [10%]

(ii) If the code length is N = 3900, how many ones does its parity-check matrix
have? [10%]

(c) A constraint node of degree 6 in the factor graph of a binary LDPC code receives
the log-likelihood ratios [3.2,�0.6,�7.2,4.4,2.8,5.7] along its 6 edges. Determine the
output messages it needs to compute to pass along its third edge in the sum-product
algorithm, and in the min-sum algorithm.

Note: The sum-product and min-sum message passing equations are given in the data
sheet. [25%]
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(d) Let the function ga with parameter a be defined as shown in Fig. 2.

y

ga(y)

1/a

a0 2a

Fig. 2

(i) Consider a binary-input memoryless channel with input variable X taking
values over the alphabet {0,1}, and a continuous output variable Y , with conditional
densities 8

<

:
fY |X (y|0) = ga(y), with a = 1

fY |X (y|1) = ga(y), with a = 2

Compute the mapping of y to the log-likelihood ratio L(y) for y 2 [0,4].
Hint: Divide the interval [0,4] into three regions and treat each region separately. [25%]

(ii) A length 5 repetition code is used at the input of the channel described in (d)(i)
above. The channel observations are [0.5,1.2,1.3,2.2,0.1]. What is the transmitted
codeword? [10%]

Page 5 of 6 (TURN OVER



Version RV/4

4 (a) Consider the cascade channel shown in Fig. 3, in which the output of a binary
symmetric channel with crossover probability p < 1

2 is the input to an erasure channel
with erasure probability a .

X = 0
1� p

p

X = 1
1� p

p

0
1�a

Y = 0
a

Y = e

1
1�a

Y = 1
a

Fig. 3

(i) Write down the channel transition matrix for the cascade channel, whose
entries are the probabilities P(Y |X), for X 2 {0,1}, Y 2 {0,e,1}. [15%]

(ii) Find the capacity of the cascade channel. Your answer should be in terms of
p and a . [25%]

(b) Consider arithmetic over the Galois Field GF(5).

(i) What is the multiplicative order of the elements 2 and 3 in GF(5)? Why can’t
there be an element of multiplicative order 3 in GF(5)? [10%]

(ii) Specify a parity-check matrix H of a Reed-Solomon code C of block length
N = 4 over GF(5) that can correct any error pattern of up to one error. [10%]

(iii) What is the dimension of the code C? How many codewords does it contain? [10%]

(iv) Is the parity-check matrix H the only parity-check matrix of C? If not, give
an example of an alternative parity-check matrix for C. [10%]

(v) Is [1,2,4,3] a codeword of C? Justify your answer. [5%]

(vi) Is C the only Reed-Solomon code over GF(5) with block length N = 4 that
can correct any pattern of up to one error? Justify your answer. For example, if you
answer no, specify a parity-check matrix H0 of another Reed-Solomon code C0 over
GF(5) that can correct any pattern of up to one error. [15%]

END OF PAPER
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Module 4F5: Engineering Tripos 2014/15 –
Numerical Answers

1. a) i) dlog2 1276e = 11 bits; ii) 0.0138; iii) H(X) = 0.0808 bits/symbol

b) i)

�
1
2

�k �1
4

�n�k
; ii) A0.05,20 consists of length 20 sequences with 9,10, or 11 ‘a’ symbols.

2. a) i) Decision boundaries at �2A, 0, 2A ii)

3
2Q
⇣q

2A2

N0

⌘
iii) Decision boundaries at

�2A�N0 ln 2
4A , 0, 2A+N0 ln 2

4A iv)

1
3Q
 r

2(A�N0 ln 2
4A )2

N0

!
+

2
3

"
Q
 r

2(A+
N0 ln 2

4A )2

N0

!
+Q

⇣q
2A2

N0

⌘#

b) i)

3
2Q
✓q

2|h|A)2

N0

◆
ii)

3
4

⇣
1 +

A2

N0

⌘�1

3. a) [ 0 1 0 1 0 0 1 1 0 ]

b) i) 14/39; ii) 15,000 ones

c) Sum-product message= -0.47, Min-sum, message= -0.6

d) L(y) = log 4 for y 2 [0, 1], log 4 + log(

2
y � 1) for y 2 [1, 2], �1 for y 2 [2, 4].

4. a) i )

Y
PY |X 0 ✏ 1

X
0 (1� p)(1� ↵) ↵ p(1� ↵)
1 p(1� ↵) ↵ (1� p)(1� ↵)

ii) (1� ↵)(1�H2(p)) bits/channel use

b) i) Multiplicative order of both 2 and 3 = 4;

ii) Either

(⇤) : H =


1 1 1 1

1 2 4 3

�
or (⇤⇤) : H =


1 1 1 1

1 3 4 2

�

iii) Dimension=2, 25 codewords; v) Codeword if H is given by (*) , not a codeword if

(**); vi) Choose the other parity matrix in ii).



Advanced Communications and Coding Data Sheet

1 Information Theory

• The Joint Entropy of random variables X1, . . . , Xn with joint pmf PX
1

...Xn is

H(X1, X2, . . . , Xn) =
X

x
1

,...,xn

PX
1

...Xn(x1, . . . , xn) log
1

PX
1

...Xn(x1, . . . , xn)

• The Conditional Entropy of Y given X is

H(Y |X) =
X

x

PX(x)
X

y

PY |X(y|x) log
1

PY |X(y|x)
| {z }

H(Y |X=x)

=
X

x

PX(x)H(Y |X = x)

Note that a similar formula holds if we condition on a collection of rvs (X1, . . . , Xn)
instead of a single random variable X.

• Chain rule for entropy : The joint entropy of X1, . . . , Xn can be written as

H(X1, X2 . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X2, X1) + . . .+H(Xn|Xn�1, . . . , X1)

=
nX

i=1

H(Xi|Xi�1, . . . , X1), where

H(Xi|Xi�1, . . . , X1) = �
P

x
1

,...,xi
PX

1

,...,Xi(x1, . . . , xi) logPXi|X1

,...,Xi�1

(xi|x1, . . . , xi�1)

• The typical set A✏,n with respect to P is the set of sequences (x1, . . . , xn) 2 X n which
satisfy the property

2�n(H(X)+✏)  P (x1, . . . , xn)  2�n(H(X)�✏),

where P (x1, . . . , xn) =
Qn

i=1 P (xi).

• The relative entropy or the K-L distance between two pmfs P and Q (defined on the
same alphabet) is

D(P ||Q) =
X

x2X

P (x) log
P (x)

Q(x).

• The mutual information between random variables X and Y with joint pmf PXY is

I(X;Y ) = H(X)�H(X|Y ) = H(Y )�H(Y |X)

= H(X) +H(Y )�H(X, Y ) = D(PXY ||PXPY )

• Chain rule for Mutual Information:

I(X1, X2, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + . . .+ I(Xn;Y |Xn�1, . . . , X1)

=
nX

i=1

I(Xi;Y |Xi�1, Xi�2, . . . , X1)
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• Random variables X, Y, Z are said to form a Markov chain (denoted X � Y � Z) if
their joint pmf can be written as PXY Z = PXPY |XPZ|Y .

• Data-Processing inequality : If X, Y, Z form a Markov chain, then I(X;Y ) � I(X;Z)

• Fano’s inequality : Let X̂ be any estimator of X from Y , i.e., X � Y � X̂. Then, the
probability of error Pe = Pr(X̂ 6= X) satisfies

1 + Pe log |X | � H(X|Y )

• The di↵erential entropy of a continuous random variable X with pdf fX is

h(X) =

Z 1

�1
fX(u) log

1

fX(u)
du

Joint di↵erential entropy, conditional di↵erential entropy, mutual information, rela-
tive entropy are all defined similarly to the discrete case.

• The di↵erential entropy of a Gaussian random variable X ⇠ N (0, �2) (mean zero and
variance �2) is

h(X) =
1

2
log(2⇡e�2) bits

2 Modulation & Wireless Communication

• White Gaussian Noise N(t): A random process in which N(t) is a Gaussian rv for
each t, and

E[N(t)] = 0, E[N(t)N(s)] =
N0

2
�(t� s), for all t, s

• The Q-function characterises the tail probability of a standard Gaussian distribution:

Q(y) =

Z 1

y

1p
2⇡
e�x2/2dx

• Complex Gaussians : h ⇠ CN (0, �2) means that h is a complex random variable
whose real and imaginary parts are i.i.d Gaussians, each distributed as N (0, �

2

2 )

• If h ⇠ CN (0, �2), then the squared-magnitude |h|2 is exponentially distributed, i.e.,
its pdf is

f|h|2(x) =
1

�2
exp

✓
�x

�2

◆
, x � 0

• The Delay Spread Td of a multipath fading channel is the maximum di↵erence between
delays of the paths from transmitter to receiver. The number of channel taps is
d2WTde, where W is the one-sided baseband bandwidth of the transmitted signal.

• If Td ⌧ 1
2W , the channel is said to have flat fading (no inter-symbol interference). If

Td >
1

2W , the fading channel has multiple taps and is said to be frequency selective.

• The coherence bandwidth of the channel is 1/(2Td). If the one-sided baseband band-
width of the transmitted signal is less than the coherence bandwidth, there will be
only one channel tap, i.e., flat fading.
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3 Coding

Finite Fields, Linear Codes

Finite fields:

• A Galois Field GF(q) for q = pm where p is any prime number consists of a multi-
plicative group of order q � 1 and an additive group of order q

• The order of an element ↵ in a group is the smallest power n such that ↵n = 1, where
1 is the neutral element of the group

• Lagrange Theorem: the order of a subgroup (and thus the order of any element in a
group) divides the order of the group

Linear codes:

• A code can correct t or less errors if and only if 2t < dmin where dmin is the minimum
Hamming distance between any two codewords

• Singleton Bound: for an (N,K) q-ary code, dmin  N � K + 1 with equality for
Maximum Distance Separable (MDS) codes

• AK-dimensional linear code of codeword length N (an (N,K) linear code) hasK⇥N
encoder matrices, (N �K)⇥N parity-check matrices, and a rate R = K/N

• An (N,K) linear code has a systematic encoder matrix of the form G = [IK ,P], to
which corresponds a parity-check matrix of the form H = [�PT , IN�K ]

• The minimum distance dmin of a linear code is the minimum Hamming weight wmin

of any non-zero codeword

Reed Solomon Codes

• The Discrete Fourier Transform (DFT) of a vector x = [x0, . . . , xN�1] with elements
over a finite field F is defined by Xk =

PN�1
i=0 xi↵

ik where ↵ must be an element of
multiplicative order N in F

• The inverse DFT is xi =
1
N?

PN�1
i=0 Xk↵

�ik where N? is N if F = GF(p) for p prime,
and N? = N (mod p) if F = GF(pm) for m > 1

• Blahut’s theorem: the linear complexity of the DFT of a sequence of length N equals
the Hamming weight of the sequence, provided the Hamming weight is less than N/2

• Reed Solomon code: An (N,K) linear code over GF(q) with a parity-check matrix
H = [↵ij] for i = 0, . . . , (N �K � 1) and j = 0 . . . , N � 1, where ↵ is an element of
multiplicative order N is GF(q)

• A Reed Solomon code has rate R = K/N , has minimum distance dmin = N �K + 1
and is hence MDS
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LDPC Codes

• Log likelihood ratios

L(yk) = log
PY |X(yk|0)
PY |X(yk|1)

= log
PX|Y (0|yk)
PX|Y (1|yk)

where the second equality holds if and only if the channel has equi-probable inputs

• Log-likelihood ratio for a binary input Additive White Gaussian channel with inputs
{�1,+1} and noise variance �2

L(y) =
2

�2
y

• Extrinsic decoding rules for nodes in the factor graph for a binary code (sum product
algorithm)

Lex
i =

X

j=\i

L(yj)

for variable nodes, and

Lex
i = 2 tanh�1

0

@
Y

j=\i

tanh
L(yj)

2

1

A

for constraint nodes.

• Min-sum simplified decoding rule for a constraint node

sign(Lex
i ) =

Y

j 6=i

sign(L(yj)) and |Lex
i | = min

j 6=i
|L(yj)|

• Degree polynomials from a node perspective:

L(x) =

dmax

vX

i=1

Lix
i, R(x) =

dmax

cX

i=1

Rix
i

• Degree polynomials from an edge perspective:

�(x) =

dmax

vX

i=1

�ix
i�1, ⇢(x) =

dmax

cX

i=1

⇢ix
i�1,

• Average degrees d̄` =
⇣R 1

0 �(x)dx
⌘�1

and d̄r =
⇣R 1

0 ⇢(x)dx
⌘�1

• “Design” rate of an LDPC code

R = 1� L0(1)

R0(1)
= 1�

R 1

0 ⇢(x)dx
R 1

0 �(x)dx

• Density evolution for binary erasure channels with erasure probability �:
(
Pve = ��(Pvi)

Pce = 1� ⇢(1� Pci)

or in one step, Pve,k+1 = �� (1� ⇢(1� Pve,k))
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