EGT3
ENGINEERING TRIPOS PART IIB

## Module 4F7

## DIGITAL FILTERS AND SPECTRUM ESTIMATION

Answer not more than three questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

## STATIONERY REQUIREMENTS

Single-sided script paper

## SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.
You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

1 Let $x(n)$ be a sequence of independent and identically distributed (i.i.d.) symbols where $x(n)=-1$ with probability 0.5 and $x(n)=1$ with probability 0.5 . The symbols $x(n)$ are transmitted through a finite impulse response communications channel. The output of the channel is

$$
u(n)=\sum_{m=0}^{M-1} a_{m} x(n-m)+w(n)
$$

where $w(n)$ are i.i.d. zero-mean random variables with variance $\sigma^{2}$.
(a) Let $\mathbf{u}(n)=[u(n), u(n-1), \ldots, u(n-L+1)]^{T}$. Find the Wiener filter $\mathbf{h}$ of length $L$ that minimises the intersymbol interference $x(n)-\mathbf{h}^{T} \mathbf{u}(n)$.
(b) Let $a_{m}=1 / M$ for all $m$.
(i) Find $\mathbf{p}=\mathbf{E}\{\mathbf{u}(n) x(n)\}$.
(ii) Let $z(n)=\sum_{m=0}^{M-1} a_{m} x(n-m)$. Find $\mathbf{E}\{z(n) z(n+k)\}$ for $k \geq 0$.
(iii) Find $\mathbf{R}=\mathbf{E}\left\{\mathbf{u}(n) \mathbf{u}(n)^{T}\right\}$.
(c) Describe, with equations, an implementation of the Least Mean Square (LMS) algorithm to learn the Wiener solution.
(d) Discuss the performance of this LMS algorithm if the coefficients $a_{m}$ were not constant but time-varying.
(e) Give a bound on the LMS step-size, in terms of the parameters of this process, that ensures the LMS filter coefficients converge in expected value.

## Version SSS/3

2 Consider the following two first-order autoregressive, or $\operatorname{AR}(1)$, processes

$$
\begin{aligned}
& x(n)=\alpha x(n-1)+u(n) \\
& z(n)=\beta z(n-1)+u(n)
\end{aligned}
$$

where $u(n)$ are independent and identically distributed zero-mean random variables with variance $\sigma^{2}$.
(a) Let $y(n)=x(n)+z(n)$. Find $h_{0}$ and $h_{1}$ that minimise

$$
\mathbf{E}\left\{\left(y(n)-h_{0} u(n)-h_{1} u(n-1)\right)^{2}\right\} .
$$

(b) Give the recursive least squares (RLS) implementation to learn the optimal values of $h_{0}$ and $h_{1}$.
(c) Let $y(n)=x(n) z(n)$.
(i) The signal $y(n)$ can be written explicitly in terms of the random variables $u(n)$ only. Find the coefficients of $u(n)^{2}$ and $u(n) u(n-1)$ for this expansion of $y(n)$.
(ii) Assume $\mathbf{E}\left\{u(n)^{4}\right\}=\sigma^{4}$. Find $h_{0}$ and $h_{1}$ that minimise

$$
\mathbf{E}\left\{\left(y(n)-h_{0} u(n)^{2}-h_{1} u(n) u(n-1)\right)^{2}\right\} .
$$

You may use the fact that $\mathbf{E}\left\{y(n) u(n)^{2}\right\}=\sigma^{4}(1-\alpha \beta)^{-1}$.

## Version SSS/3

3 Consider the second-order autoregressive, or $\operatorname{AR}(2)$, process

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+w_{n}
$$

where $w_{n}$ are independent and identically distributed zero-mean random variables with variance $\sigma^{2}$.
(a) For $a_{1}=0$, find the range of values for $a_{2}$ so that $\left\{x_{n}\right\}$ is a wide-sense stationary (WSS) process.
(b) Find the expression for the autocorrelation function $R_{X X}[k]=\mathbf{E}\left\{x_{n} x_{n+k}\right\}$ for $k=$ $0,1,2$ in terms of $a_{1}, a_{2}$ and $\sigma^{2}$.
(c) The estimated autocorrelation sequence for an unknown WSS random process is

$$
\hat{R}[0]=1, \quad \hat{R}[2 k]=0.8^{|k|}
$$

while $\hat{R}[k]=0$ for odd values of $k$.
(i) Using these autocorrelation estimates, solve for $a_{1}, a_{2}$ and $\sigma^{2}$ for the $\operatorname{AR}(2)$ model.
(ii) Find the corresponding power spectral density (PSD) estimate $\hat{S}_{X}\left(e^{j \omega}\right)$ from these values of $a_{1}, a_{2}$ and $\sigma^{2}$.
(iii) Find the expression for the PSD when estimated directly using

$$
\hat{R}[-N+1], \ldots, \hat{R}[N-1]
$$

for the two cases when $N$ is finite and $N$ is infinite.
(iv) What is the relationship between the two PSD estimates in parts (ii) and (iii) when $N$ is finite?

4 Consider the autoregressive moving average, or $\operatorname{ARMA}(2,1)$, process

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+b_{0} w_{n}+b_{1} w_{n-1}
$$

where $w_{n}$ are independent and identically distributed zero-mean unit-variance random variables.
(a) Find $\mathbf{E}\left\{w_{n+k} x_{n}\right\}$ for $k=-1,0,1, \ldots$
(b) Find $R_{X X}[k]=\mathbf{E}\left\{x_{n+k} x_{n}\right\}$ for $k \geq 0$.
(c) Find $a_{1}$ and $a_{2}$ in terms of the autocorrelation of the signal $x_{n}$.
(d) Explain how a solution for $b_{0}$ and $b_{1}$ can now be found.
(e) Using the method of parts (c) and (d), find the minimum number of autocorrelation values $\mathbf{E}\left\{x_{n+k} x_{n}\right\}$ that are needed to solve for the parameters of an ARMA(P,Q) model. (Hint: the autocorrelation function of the ARMA(P,Q) model is

$$
R_{X X}[r]=\sum_{p=1}^{P} a_{p} R_{X X}[r-p]+\sum_{q=0}^{Q} b_{q} h_{q-r}
$$

where $h_{0}, h_{1}, \ldots$ is the impulse response of the $\operatorname{ARMA}(\mathrm{P}, \mathrm{Q})$ model. $)$

## END OF PAPER

Version SSS/3

THIS PAGE IS BLANK

