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ENGINEERING TRIPOS PART IIB

Wednesday 20 April 2016 2 to 3.30

Module 4F7

DIGITAL FILTERS AND SPECTRUM ESTIMATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Describe briefly the principles behind the nonparametric power spectral
estimation method. Your discussion should include the correlogram, periodogram and
possible improvement strategies. [30%]

(b) It is proposed to estimate the power spectrum of a wide-sense stationary random
process by first multiplying the data xn with a window function wn having length N, i.e.
wn = 0 for n < 0 and n > N−1, so that

xw
n = wnxn .

The autocorrelation function is then estimated as

R̂XX [|k|] =


1
N ∑

N−1
n=0 xw

n xw
n+|k|, k =−N +1, ...,−1,0,1, ...,N−1 ,

0, otherwise.

(i) Show that the expected value of the autocorrelation function estimate is given
by

E[R̂XX [|k|]] = RXX [k]
1
N

N−1−|k|
∑

n=0
wnwn+|k|

where RXX [k] is the true autocorrelation function for the process, and hence explain
whether this estimator is biased or not. [30%]

(ii) The power spectrum estimate ŜX (e jθ ) is obtained by taking the DTFT of the
estimated autocorrelation function R̂XX [k].
Show that the expected value of the corresponding power spectrum estimate is:

E[ŜX (e
jθ )] =

1
2πN

SX (e
jθ )∗ |W (e jθ )|2

where SX (e jθ ) is the true power spectrum of the random process, W (e jθ ) is the
DTFT of the window function wn, and ∗ denotes the convolution operator. [25%]

(iii) Explain the advantages and disadvantages of this method for power spectral
estimation in comparison with the standard periodogram estimator. [15%]
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2 (a) Describe the autoregressive moving average (ARMA) class of signal model,
explaining how to obtain the power spectrum of an ARMA process and any advantages
of such an approach compared to nonparametric approaches. [30%]

(b) An ARMA(P,Q) model has the following digital filtering equation:

xn =−
P

∑
p=1

ap xn−p +
Q

∑
q=0

bq wn−q ,

where {wn} is zero mean white noise with unity variance, and the filter is assumed stable.

(i) Explain carefully why it is not necessary to include a variance parameter for
the white noise process {wn} in the above ARMA formulation. [10%]

(ii) Show that the ARMA model autocorrelation function obeys the following
difference equation:

RXX [r]+
P

∑
p=1

ap RXX [r− p] =
Q

∑
q=0

bqhq−r ,

where hr is a particular function of the ARMA filter that should be carefully defined.
Explain why the term ∑

Q
q=0 bqhq−r must always be zero for r > Q. [30%]

(c) An ARMA(1,1) model is to be estimated from autocorrelation data.

(i) Express the first two terms h0 and h1 from the ARMA(1,1) model in terms of
the coefficients {ap} and {bq}. [10%]

(ii) Some values of the autocorrelation function for an ARMA(1,1) process are
given by

RXX [0] = 1, RXX [1] =−0.4, RXX [2] = 0.2, RXX [3] =−0.1 .

Use the result of part (b)(ii) and your expressions for h0 and h1 to determine the
coefficients of the corresponding ARMA(1,1) model. You are given that b0 equals
2. [20%]
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3 Consider the following recursive algorithm:

h(n) = h(n−1)+µR̃−1(p−Rh(n−1)),

where R and p are a postive definite matrix (input correlation matrix) and a vector
(crosscorrelation vector between input signal and reference) of appropriate dimensions,
respectively. The positive definite matrix R̃ is assumed to be an approximation or estimate
of the true correlation matrix R. Moreover, it is assumed that R̃ can be expressed as
R̃ = QΛ̃QT , where the matrix Q is an orthonormal matrix and contains the eigenvectors
of the original correlation matrix R, and Λ̃ is approximated as a diagonal matrix.

(a) Assuming the coefficient vector h(n) of the algorithm converges towards a limit
hopt, find an expression for hopt. [10%]

(b) (i) Based on the eigenvalue decomposition (modal decomposition) of R and the
above expression decomposition of R̃, obtain a recursion for the misalignment
h(n)− hopt in the corresponding eigendomain, and find the limits for the choice
of the stepsize µ ensuring convergence of the algorithm whatever initial vector h(0)
is chosen. [30%]

(ii) Discuss the extreme cases R̃ = R and R̃ = I. Distinguish in this discussion
between the use of a common stepsize for all modes, and modal stepsizes in which
different step sizes may be chosen for each mode. [15%]

(iii) In the case R̃ = I and a single stepsize for all modes, express the range of
stepsize in terms of a signal variance rather than eigenvalues. [15%]

(c) In practical applications, the quantities R and p are typically not known in advance.
Moreover, they can be time-varying.

(i) How can the above recursive algorithm be approximated to obtain practical
algorithms such as the Least-Mean-Square (LMS) algorithm? State the relation
explicitly using equations. [10%]

(ii) How is the matrix R̃ defined for the LMS algorithm? [10%]

(iii) How should the matrix R̃ be defined in order to obtain a Recursive-Least-
Square (RLS)-like algorithm? Note that in this case, it will be required to handle
nonstationary environments. [10%]
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4 (a) In the standard adaptive filtering problem we have an input signal {u(n)}∞n=0,
a reference signal {d(n)}∞n=0, and a Finite Impulse Response (FIR) filter {hm}M−1

m=0
of length M. Describe the setup of the general adaptive filter, including the error
criterion/cost function in vector notation, and illustrate it by a simple block diagram. Also
explain briefly the main conceptual difference between a Wiener filter and an adaptive
filter implementation. [15%]

(b) Name the four basic classes of application within the framework of part (a) and
describe any three of them with the aid of block diagrams. Give one practical example for
each class of applications. [15%]

(c) One of the most popular adaptive filtering algorithms is the Least-Mean-Square
(LMS) algorithm. Explain the main ideas behind the LMS algorithm and give the
coefficient update equation. How is it obtained from the cost function in part (a)? (No
detailed derivation is required.) [10%]

(d) The Normalised LMS (NLMS) algorithm is closely related to the LMS algorithm.

(i) Give the coefficient update equation of the NLMS algorithm. What is the
advantage of the NLMS algorithm over the LMS? [15%]

(ii) Describe how the NLMS coefficient update equation can be interpreted as a
projection mechanism. Give a geometrical illustration of this projection. [15%]

(e) The idea of interpreting the NLMS coefficient update as a projection operation (as in
part (d)(ii)) can be generalised to yield a whole class of improved adaptation algorithms.

(i) Explain how the NLMS projection idea can be generalised to improve
performance. Give a graphical illustration of the projections involved. [15%]

(ii) Give the coefficient update equation for the resulting algorithm. [15%]

END OF PAPER
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Answers

1

2 (b)(i)
h0 = b0, h1 =−a1 h1 =−a1b0 +b1

(ii)
a0 = 0.5, b1 = 0.05

3

4
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