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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2017 2 to 3.30

Module 4F7

DIGITAL FILTERS AND SPECTRUM ESTIMATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A source transmits a sequence of wide sense stationary random symbols x(n) where
Pr{x(n) = 1}= Pr{x(n) =−1}= 0.5 and E{x(n)x(n+ k)}= β |k| where 0 < β < 1.

x(n) is transmitted through a communications channel and the output of the channel is

d(n) =
∞

∑
m=0

amx(n−m)+w(n)

where w(n) is a sequence of independent and identically distributed (i.i.d.) zero-mean
random variables with variance σ2.

A local copy of the transmitted symbols are available at the destination which is to be
used to estimate the channel impulse response.

(a) Let x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T . Find p = E{x(n)d(n)} and
R = E{x(n)x(n)T}. [15%]

(b) Show that the Wiener filter that minimises the error of the channel approximation
d(n)−hT x(n) satisfies the equation Rh = p. (The filter h has length M.) [15%]

(c) For M = 1 solve for the Wiener filter and explain why the Wiener solution is not a0.
[10%]

(d) Describe, with equations, an implementation of the Least Mean Square (LMS)
algorithm to learn the Wiener solution. Discuss the performance of this LMS algorithm if
the coefficients am were not constant but time-varying. [15%]

(e) Using Rh = p or otherwise, show that the Wiener solution is the channel impulse
response in the limit as M tends to infinity. [25%]

(f) Assume now that the source symbols are i.i.d.

(i) Find the Wiener filter for this new case. [10%]

(ii) Find the minimum mean square error and sketch it as a function of M. [10%]
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2 Let θ0 be a random variable with finite variance and mean. Let {w(n)} and {v(n)}
be two sequences of independent and identically distributed (i.i.d.) random variables with
E{w(n)}= E{v(n)}= 0 and E{w(n)2}= σ2

w, E{v(n)2}= σ2
v .

(a) Let y0 = θ0 + v(0) be a noisy observation of θ0. Find the constant c that minimises
the mean square error (MSE) E

{
(θ̂0−θ0)

2
}

of the estimate of θ0 given by θ̂0 = cy0.
Give the minimum MSE. [15%]

(b) Let θ1 = θ0 +w(1) and consider the estimate of θ1 given by θ̃1 = dθ̂0 where θ̂0 is
your minimum MSE estimate from part (a). Find the constant d that minimises the MSE
E
{
(θ̃1−θ1)

2
}

and give the MSE of θ̃1. [10%]

(c) Let y1 = θ1 + v(1). Consider the following updated estimate of θ1 that uses
observation y1

θ̂1 = Kθ̃1 +Ly1

where θ̃1 is your minimum MSE estimate from part (b).

(i) Find the relationship between K and L so that the estimate θ̂1 is unbiased.

(ii) Find K and L that minimises the MSE E
{
(θ̂1−θ1)

2
}

.

[50%]

(d) Consider the model

yn = bnθn + v(n)

θn+1 = an+1θn +w(n+1)

for n ≥ 0 where an and bn are known constants. Explain how your results from parts (a)
to (c) can be used to obtain the sequence of estimates θ̂n of θn. [25%]
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3 Consider the AR(P) process

xn =
P

∑
i=1

aixn−i +wn

where wn is a white noise sequence with variance σ2.

(a) Let p(x0, . . . ,xP−1) be the probability density function of P variables of the AR(P)
process.

(i) Define strictly stationary.

(ii) Assuming the AR(P) process is strictly stationary, describe, with equations,
a procedure to find p(x0, . . . ,xP−1). Justify any further assumptions made on the
noise process wn.

[25%]

(b) Consider a strictly stationary AR process with P = 2 and a1 = 0.

(i) Find p(x0,x1). [15%]

(ii) Let p(x2, . . . ,xn|x0,x1) denote the conditional probability density function of
of x2, . . . ,xn given the values of x0 and x1. Find the maximum likelihood estimate
(MLE) of a2 and of σ2. [40%]

(iii) Relate the MLE of a2 and of σ2 to the estimates given by the Yule-Walker
method. [20%]
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4 (a) Show that the variance of the periodogram estimate is approximately equal to
the square of the power spectrum for a Gaussian white noise process, i.e. show that

var
(

ŜX (e
jω)
)
≈ SX (e

jω)2

where ŜX (e jω) is the periodogram estimate and SX (e jω) is the power spectrum of white
Gaussian noise. [35%]

(b) The estimate of the power spectrum of a random process {xn} is being updated
sequentially as follows:

Ŝ(k)(e jω) = (1− γk)Ŝ
(k−1)(e jω)+ γk

1
N

∣∣∣∣∣N−1

∑
n=0

x(k)n e− jnω

∣∣∣∣∣
2

where x(k)n = xn+N(k−1) is the nth sample of the kth block of N data points. This equation

is initialised at k = 1 with Ŝ(0)(e jω) = 0.

Assume {xn} is white Gaussian noise.

(i) Find the the variance of Ŝ(k)(e jω) when γk = 1/k and also when γk = a where
0 < a < 1. [30%]

(ii) Find the limit of these variances as k tends to infinity. [10%]

(c) Assume that xn = wn +wn−1 where {wn} is white noise. Find the expected value

of the periodogram estimate 1
N

∣∣∣∑N−1
n=0 xne− jnω

∣∣∣2 for frequency ω = 0. [25%]

END OF PAPER
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