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Module 4M12

PARTIAL DIFFERENTIAL EQUATIONS AND VARIATIONAL
METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Write your candidate number not your name on the cover sheet.
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Engineering Data Book

10 minutes reading time is allowed for this paper.
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1 (a) Explain the difference between dispersive and non-dispersive waves and give

a physical interpretation of d’Alembert’s solution to the wave equation. [20%]

(b) Consider a slowly-modulated, one-dimensional wave train of the form

η(x, t) = A(x, t)exp[iθ(x, t)] ,

whereA is the local amplitude andθ the phase function. The local wave-number and

frequency of the wave,k(x, t) andω(x, t), are defined as

k = ∂θ/∂x, ω = −∂θ/∂ t .

If A, k andω are slowly varying functions ofx andt, satisfying the dispersion relation

ω = ω(k), show that an observer must move at the speedcg(k) = dω/dk to keep seeing

waves of wavelengthλ = 2π/k. [30%]

(c) The governing equation for two-dimensional gravity waves in a uniformly stratified

fluid is
∂2

∂ t2

(

∂2

∂x2 +
∂2

∂ z2

)

uz +N2∂2uz

∂x2 = 0 ,

whereN is a constant anduz is the vertical velocity of the fluid. Derive an expression

for the dispersion relationship for such waves and determine the range of realisable

frequencies. [15%]

(d) Show that the group velocity for two-dimensional gravity waves is given by an

expression of the form

cccg = ±Nkz

|kkk|3 fff (kx,kz, êeex, êeez) ,

wherekkk = kxêeex + kzêeez is the wave-vector,̂eeex andêeez unit vectors, andfff some unknown

vector function. Findfff . [35%]

Page 2 of 6



Version JL/2

2 Heat flows radially outward into an infinite solid from a point source located at the

origin. The governing equation for the spherically symmetric temperature field,T (r, t), is

∂T
∂ t

= α∇2T +
Q̇

ρcp
δ ,

whereQ̇ is the rate of heat release from the origin,α the thermal diffusivity,ρ the density

of the solid,cp the specific heat capacity, andδ the three-dimensional delta function

which satisfies
∫

δ dV = 1 for any volume that encloses the origin. The temperature at

large distances from the origin is zero.

(a) For distances much less than the diffusion lengthl =
√

αt the solution may be

considered to have reached a steady state. Hence show that the solution forr ≪ l is

T =
Q̇

αρcp

1
4πr

.

[30%]

(b) Consider the change of variableΓ(r, t) = rT (r, t). Show that, if we exclude the

origin itself, the governing equation for arbitrary distances from the origin can be rewritten

as
∂Γ
∂ t

= α
∂2Γ
∂ r2 ,

and that self-similar solutions of the formΓ = F(r/
√

αt) satisfy

F ′′(η)+
1
2

ηF ′(η) = 0, where η = r/
√

αt .

[35%]

(c) Using the results of parts (a) and (b) above, find the temperature distribution,T (r, t),

expressed in terms of the integral
∫

exp
[

−η2/4
]

dη. You may use the fact that

∫ ∞

0
exp
[

−η2/4
]

=
√

π .

[35%]
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3 We wish to use the Lagrange multiplier method to determine the curveu(x) from

(x,u) = (−1,0) to (1,0) that has minimum length and encloses a given (constant) areaA

with thex-axis (see Fig. 1).

(a) Write down the curve length as an integral
∫ 1
−1F(x,u,u′) dx in terms of the function

u(x). [10%]

(b) Write down the augmented integrand of the constrained functional in the form of

F +λG, whereλ is a parameter andG related to the area constraint. [10%]

(c) Deduce the Euler-Lagrange equation for the augmented functional. [20%]

(d) Deduce the curveu(x) with two integration constants and state what kind of curve

it is. [40%]

(e) Use the boundary conditions and the parameterλ to determine the two integration

constants in (d). State the valid range forλ . (Note thatλ can be determined by the given

areaA, though we do not ask you to do so here.) [20%]

u

x

u(x)

1
Fig.1 

A

−1
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4 (a) Consider a functional of the form

I[u(x)] =
∫ 1

0
F(x,u,u′,u′′) dx ,

where u(x) is a smooth function defined in the interval[0,1], and the integrand

F(x,u,u′,u′′) involves the first derivativeu′ and the second derivativeu′′ of u. We seek

the functionu(x) which is a stationary function ofI[u(x)].

(i) Write down the directional derivative of the functionalI[u(x)]. [10%]

(ii) Deduce the governing (Euler-Lagrange) equation foru. [30%]

(iii) Discuss possible boundary conditions of the problem. [10%]

(b) The result in (a) can be used to determine the stationary function u(x) for the

functional

I[u(x)] =
∫ 1

0

1
2

(

u′′
)2 dx

subject to the boundary conditions

u(0) = u′(0) = 0, u(1) = u′(1) = 0 ,

and the constraint
∫ 1

0
u dx = 1 .

(i) Write down the augmented integrand of the constrained functional. [10%]

(ii) Deduce the Euler-Lagrange equation for the augmented functional. [10%]

(iii) Use the boundary conditions and the integral constraint to determine the

solution of (ii) in (b). [30%]

END OF PAPER
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