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ENGINEERING TRIPOS PART IB

Friday 3 June 2016 2.00 to 4.00

Paper 7

MATHEMATICAL METHODS

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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SECTION A

Answer not more than two questions from this section

1 A vector field is described by u = −Pr
2

êr +Qz êz , where P and Q are constants,
and êr and êz are the unit vectors in cylindrical polar coordinates.

(a) Determine the condition for which the flow is solenoidal, and obtain both the scalar
potential φ(r,z) and a vector potential A = A(r,z) êθ for that condition. [8]

(b) Obtain an expression for the field lines for general values of P and Q. [5]

(c) Calculate the net flux of u across the following surfaces which enclose the volume
V , indicated in Fig. 1, as a function of geometric parameters, P and Q:

(i) S1: a circle of radius ro located on the z = zo plane. [3]

(ii) S2: a cylindrical surface of radius ri and height zi above the plane z = 0,
centered on r = 0, such that r2

i zi = r2
o zo . [3]

(iii) S3: a circle of the same radius ri at z = 0. [2]

(iv) S4: the conical surface. Express your answer as a function of V , ro and zo . [4]

S1

S2

S3

S4

ri

ro

zi

Fig. 1
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2 A vector field B is expressed in terms of the Cartesian coordinate system (x,y,z)
and the associated unit vectors (i, j,k) as

B = yz
d f
dx

i+ f z j+ f y k

where f (x) is a function only of x.

(a) Show that B is a conservative (i.e. irrotational) vector field and find its scalar
potential φ . [7]

(b) The surface S encloses the volume V that is a sphere of radius 1 centred at
(x,y,z) = (0,1,1). If the net flux of B through S is equal to zero, and if f (x) is
differentiable within S, what condition or conditions could f (x) satisfy? [5]

(c) A new vector field is defined as C = ψB. If C is a conservative vector field, and
B = ∇φ , find an expression relating ∇ψ to ∇φ . Show that this expression is satisfied by
ψ = g(φ), where g is any differentiable function of φ . [5]

(d) (i) Evaluate the line integral
∫

B · dl along x from (-1, 1, 1) to (1,1,1) when
f (x) = sin(πx/2). [3]

(ii) Using the same function f in item (d)(i), evaluate the line integral
∫

B ·dl over
the parametric curve given as: [5]

x = cosθ

y = sinθ +1

z = 2− y

for 0≤ θ ≤ π.
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3 A uniform beam has length L and is aligned along the x-axis, as shown in Figure 2.

x

y

0 L

Fig. 2

Small undamped transverse vibrations of this beam are governed by the following partial
differential equation for the deflection y(x, t):

c2 ∂ 4y
∂x4 +

∂ 2y
∂ t2 = 0

where c is a constant.

(a) Assuming that the solution to this equation can be found by separation of variables:
y(x, t) = X(x)T (t), find the governing differential equations for X and T . Confirm that
the following expressions for X and T satisfy these equations, and find the relationship
between ω , k and c. [12]

X(x) = Acos(kx)+Bsin(kx)+C cosh(kx)+Dsinh(kx)

T (t) = Pcos(ωt)+Qsin(ωt)

(b) The boundary conditions given are:

y = 0
∂y
∂x

= 0 at x = 0

∂ 2y
∂x2 = 0

∂ 3y
∂x3 = 0 at x = L

Find all solutions to the above governing partial differential equation, subject to these

boundary conditions, and assume zero initial velocity, i.e.
∂y
∂ t

= 0 for all x at t = 0. Show
that the modes are determined by the following relationship: [13]

cosh kL cos kL =−1
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SECTION B

Answer not more than two questions from this section

4 (a) Solve the following system of linear equations using Gaussian elimination:

x1 + 3x2 − 2x3 + x4 = −1
2x1 − 2x2 + x3 − 2x4 = 1

x1 + x2 − 3x3 + x4 = 6
3x1 − x2 + 2x3 − x4 = 3

[2]

(b) Find the LU decomposition for the matrix

A =

 1 2 3
2 4 5
1 3 4


[3]

(c) Solve
(X−B)−1 = C,

in which

B =

(
1 3
3 9

)
and C =

(
1 2
−3 4

)
[4]

(d) Consider the matrix

D =

 1 1 3 a
1 2 1 1
2 4 2 2


Determine a basis for the null space of D and state the dimensions of the null space. [8]

(e) If v is an eigenvector of an invertible matrix E, prove that v is also an eigenvector
of E2 and E−2, and state the corresponding eigenvalues. [8]
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5 (a) Prove that the following matrix A is skew-symmetric:

A =

 0 6 −3
−6 0 −8
3 8 0


[2]

(b) Find the eigenvectors of the system

Bx = λx,

in which

B =

 1 −1 2
−3 −2 3
2 −1 1

 and x =

 x
y
z


[5]

(c) (i) Prove that the matrices CCT and CT C have the same eigenvalues, except for
the eigenvalue of 0. [6]

(ii) Let

C =

(
1 −1 1 0 −1 0
1 0 0 1 −1 1

)
Find all eigenvalues of CT C. [4]

(d) Let

E =

 1 2 2
1 1 3
1 −1 5


Find an invertible matrix Z and a diagonal matrix D such that

Z−1EZ = D

[8]
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6 (a) Suppose x is a continuous random variable with probability density function
f (x) = 1

2
√

x ;1 ≤ x ≤ 4. Show that f (x) is a suitable function for a probability density
function and calculate the expected value and variance of x. [6]

(b) The breakdown of a conveyor belt is modelled by an exponential distribution with
a mean of 25 days. Calculate the probability that the conveyor belt breaks down in a 40
day period. [4]

(c) Assume a failure can always be repaired and repair time can be neglected. Let n be
the number of failures of the product over time interval t. From first principles, derive an
expression for the probability of a product failing one or more times in time interval t. [10]

(d) The product in part (c) consists of 8 individual parts that all must work for the
product to function. The probability of failure of a part is uniformly distributed and is
independent of the probability of failure of the other parts. As in part (c), assume a failure
can always be repaired and repair time can be neglected. On average each part fails once
every 4 years. Calculate the probability of the product failing as a result of a part failing
within a time period of 1.5 years. [5]

END OF PAPER
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Answers
1.

(a) P = Q

φ =−Pr2

4
+

Pz2

2
+φ0

A = A(r,z) =−Pzr
2

êθ

(b) r2/PzQ = const.
(c) (i) Qπr2

ozo

(ii) −Pπr2
ozo

(iii) 0
(iv) (Q−P)(V −πr2

ozo)

2.

(a) -

(b)
d2 f
dx2 is zero or anti-symmetric about the integration coordinate x

(c) -
(d)(i) 2

(ii) ±2

3.

(a) k =
√

ω

c

(b)
d2 f
dx2 is zero or anti-symmetric about the integration coordinate x

(c) y(x, t) = Y0 cos(ωt)[coskx+ coshkx+R(sinkx+ sinhkx)], where R =
sinhkL− sinkL
coskL+ coskL

4.
(a) X = (2,−3,−1,4)

(b) LU =

 1 0 0
1 1 0
2 0 1


 1 2 3

0 1 1
0 0 −1


(c) X =

(
1.4 2.8
3.3 9.1

)
(d) (−5,2,1,0) and (−(2a−1),−(1−a),0,1). Null space has dimension 2.
(e) -
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5.
(a) -
(b) −2,−1,3
(c) (i)

(ii) 6,2,0

(d)

 −4 1 −8
1 1 −5
1 1 1


6.
(a) -
(b) 0.798
(c) 1− exp(−n)
(d) 0.95
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