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SECTION A

(a) Field lines obey % — Z—i Therefore:
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(b) Solenoidal if V-u = 0 and irrotational if V x u = 0.
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QED

(c)  Scalar potential, ¢, for u is such that u = V¢. Therefore:
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For the x-component:
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For the y-component:
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The line integral between two points can be found from the difference between the

scalar potential at these points and is hence:
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(d) The position (X,Y) of the particle obeys dX/dt = u, and dY /dt = uy,

therefore:

dx
E =SX&X :X()eSt

‘;—f = SY &Y =Yy

Therefore after a time ¢ the distance r between the two particles released from
(Xo,Yp) and (X + ro, Yp) will be:

r=(Xo+rp)eS — XpeS < r = rgeS. Differentiating w.r.t 1 gives dr/dt = SroeS,

i.e. dr/dt =rS. QED.

(TURN OVER
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2 (a) If r =xand s =y, then the given identity becomes

d(x,y) d(u,v)  d(x,y) [a(u,v)}q

1: =

d(u,v) d(x,y)  9I(u,v)

(b)  Curve sketching: consider behaviour as x,y — oo, find x when y = 0 etc.
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(c) The transformation x2 — y2 = u, 2xy = v suggests itself. Then, the limiting
curves become: x> —y? =l =u=1;x2—y2 =2=u=2; 2xy=m/2 =v=m/2; and
2xXy=nm=>v=nm

d(xy)

To calculate the integral, we need to calculate the Jacobian ) | Since we do

not have explicitly x and y as functions of u and v (we can get such expressions, but the
algebra is messy), we use the result from part (a). Therefore:

2x 2y

adx g,\'
Log —2y 2x
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{a(u,v) _
d(x,y)

The integrand becomes: 4(x* —y*)sin(2xy) = 4(x2 +y2) u sin(v). Therefore the

‘au @'

integral 1= [ [4(x*—y*)sin(2xy) dx dy becomes:

1 2 T
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du Jdu
NOTE: Some books define the Jacobian matrix [ gi 3{ } , which has the same
dx dy

determinant as the Jacobian we use in our course.



3 (a) If A is an area enclosing a volume V, and if n is the normal vector pointing
outwards, then Gauss’s theorem for the heat flux vector q, using q = —AVT, gives for the

l/q-ndA - /V//V-qdv
= —/V/ AV2T dv

But this must be equal to the rate of change (rate of decrease) of the internal energy of the

overall heat flow out of V:

material inside V, or:

_ai (pepTV) = // AV2T dv

In the limit V — 0, T and V2T are uniform inside V, and therefore:

a—T:ONZT, a:i
dt pcp

(b)  Separation of variables means we seek solutions of the form 7 = X (x)®(t).

By putting in the pde, we get aX”'® = X@', or:
/ 11
S =l =k
with K the separation constant and ’ implying differentiation with respect to the
corresponding independent variable. The general form of the solution of these equations
is:
® =exp(Kt) , X =exp (i K/ax)

Let us explore the nature of these solutions for various values of K. If K > 0, then ®
grows exponentially, which is unrealistic for our problem. If K < 0, ® — 0 at large ¢ for
all x, which is unrealistic since the boundary value is oscillating. Therefore let us test
K = im. In this case,

O =exp(iot) , X =exp (j: iw/ocx)

The equation for X needs some attention. Using /i = (1 +i)/v/2, we get: X =
exp [:l:(l +i)4/ %x] , from which we must avoid the ¢* behaviour, and therefore X =

exp (7 \/2_%' x) exp (—i1 Joik. o ) Putting everything together:
T =1 | of — @ e =
= 1pexp |1 2(Xx Xp z(xx

(TURN OVER for continuation of Question 3
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where use of the boundary condition has been made. Taking the real part, we get the final

T (x,t) = Tycos (wt—,/%x) exp <—,/%x) (1)

Before finishing, let’s make some checks. Atx =0, T = Tycos(wr), as it should. As

answer:

x — 0, T"— 0, i.e. the thermal wave does not reach far. (Note that since the heat equation
is linear, T = 0 is not unrealistic, since we can understand physically 7" as the temperature
above some finite value.) As x increases, the oscillating 7' lags behind the oscillation at
the boundary and the amplitude decreases.

(c) The student is urged to sketch Eq. (1) carefully, for example in Excel or
Matlab. The fact that @ appears in both the exponential decay of the amplitude with x and
in the cosine describing the oscillation with ¢ implies a special form of the T variation
with 7 and x. An interesting animation of this solution (which is also applicable for other
problems, e.g. in the viscous fluid flow above an oscillating plate) can be found at:

en.wikipedia.org/wiki/Stokes_boundary_layer

(accessed June 2010).



SECTION B

4 (a) Arrivals are independent, so we have a Poisson distribution with intensity
A = 3000 per hour.

(b)  Arrivals at CPU B are Poisson with Az = 1000 per hour, as the requests are
assigned randomly. The approximating Gaussian has mean u = Az and variance 62 = Ag.

(c) Look up cumulative Gaussian at (1050 — Ag)/1/Ag ~ 1.58 in data book
standard Normal table, which is p(f|B) = 1 —0.9429 = 0.0571.

(d) For CPU A, the similar probability is Gaussian exceeding (2100 —
Ap)/ /A == 2.24 which is p(f|A) = 1—0.9875 = 0.0125 (data book). The probability
that the failure was caused by A is given by Bayes’ rule:

r(f1A)p(A)

p(f|B)p(B) + p(f|A)p(A) = .30

p(Alf) =

(¢)  Probability of failure with random assignment p(f|B)p(B) + p(f|A)p(A) =
0.0274. Optimal assignment corresponds to a single Poisson with rate 3000 exceeding
the total capacity 3150, ie the probability of failure is the prob that std Gaussian exceeds
150/+/3000 = 2.74 which is 1 —0.9969 = 0.0031 (ie a much lower failure rate).

(TURN OVER
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5 (a)  We perform L-U decomposition on the matrix:

I 3 1 4 I 00 I 3 1 4
A= -1 -1 0 3 |=|-110 0 2 1 1
2 4 1 7 2 01 0 -2 -1 -1
I 0 0 1 314
=] -1 1 0 0211|=LU
2 -1 1 0 00O

Column space: columns of L corresponding to non-zeros rows of U, therefore the basis
is:
1 0

—1 ’ ﬁ’l
2 —1

Row space: The non-zeros rows of U, therefore the basis is:

0

o]

S U

2
1
1

Null space: the solution of A x = 0, or equivalently, the solution of U x = 0. This gives:

X1 0
1 31 4

X2 0
0211 =

X3 0
0000

X4 0

Using (x3,x4) = (1,0) and (x3,x4) = (0,1) as two sets of values for the free variables, we
get the two basis vectors:

1/2 —-5/2
—1/2 —1/2
1 ’ 0
0 1

Left null space: the solution of A7 x = (0. Therefore:

1 -1 2
X1 0
3 -1 4 e
10 1 & =
X3 0
4 -3 7

(cont.












which gives the vector

(b) Ax=b&LUx=b<& L c=b, where U x = ¢. For a solution to exist,
b must be in column space, therefore b must be normal to every vector in null space.

Therefore
—1
b- 1 =0=—-14+a=0=a=1
1

(c)  The general solution will be the particular solution plus a linear combination
of the null space basis vectors. To find the particular solution, we first find ¢ given by
Lc = b, which gives ¢ = [1 1 0], and then we solve for Ux = ¢. Therefore:

X1
1 31 4 1
X2
0211 o | = 1
0000 0
0
(putting zero’s for the free variables), which gives x; = —1 /2 and xy = 1/2. Therefore
the general solution is:
-1/2 1/2 —5/2
1/2 —1/2 —-1/2
X= / +2z / +it /
0 1 0
0 0 1

By performing the multiplication Ax, it is easy to show that Ax = b.

(TURN OVER
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6 (a) Provided the eigenvectors of A span RV , any vector x can be written as
X = aju; +apuy +...ayuy, where u; etc are the eigenvectors with corresponding
eigenvalues ;| > [A] > ... > |Ay|. Then, A*x = all{‘ul +azl§u2 +...+aN7L/\‘,uN.
For large k, the first terms dominate, so A¥ ~ alk{‘ul +a21§u2, which implies
' AK+ IX’
|A*x]

The rate of convergence is determined by |A;/A,].

%).1

(b) The matrix (A —3I)~! has eigenvalues (A —3)~L, where A; are the
eigenvalues of A. The closest eigenvalue to 3 will be the largest (in magnitude) eigenvalue
of (A —3I)~!. We expect the convergence rate to be:

A -3
A-3

with A the nearest eigenvalue to 3 and A’ the next nearest.

© 1 )
(B II)_I _ 0 0.1 _ 0 10
0.1 0 10 0
Therefore: _ _
(B—I)*lx: 0 10 x| 10x
10 0O | y 10y |
and _
(B —I)*ZX _ IOOX
100y

which evidently means that (B—1I)~! has eigenvalue 10, (B—1)~2 has eigenvalue 100,
etc., therefore the eigenvalues of B are 14-0.1, i.e. 0.9 and 1.1. (Note: by performing the
calculation of the eigenvalues of B one finds the same values.) The procedure does not

work for the eigenvectors because it enters a cycle.
(d)  The inverse power method implies y; = (A — aI)‘lka, with y;, = (A —

OCI)_kX. It is computationally cheaper to solve (A — ol)y 1 = y; with an LU
factorisation.

END OF PAPER



