
Crib for 3F8: Inference

Exercise 1

a) Maximum a posteriori (MAP) estimation can be used to estimate the parameters θ of a prob-
abilistic model from data D. The model specifies a likelihood function p(D|θ) and a prior
distribution p(θ). Bayes rule gives us the posterior distribution p(θ|D) ∝ p(D|θ)p(θ). The MAP

estimate θ̂MAP is the one that maximizes this posterior. In particular,

θ̂MAP = argmax
θ

log p(D|θ) + log p(θ) ,

where the log is used to perform numerically stable optimization. The MAP estimate balances
between maximizing the likelihood p(D|θ) and the prior assumptions p(θ).

b)

(i) The likelihood function is p(Data|ρ) =
∏10

i=1 ρ
xi(1− ρ)1−xi = ρ3(1− ρ)7. To find the MLE

we compute the log-likelihood and find the value of ρ that sets its gradient to zero. In
particular,log p(Data|ρ) = 3 log ρ+ 7 log(1− ρ). Then

d log p(Data|ρ)
dρ

=
3

ρ
− 7

1− ρ
= 0 ⇔ ρ = 3/10 .

(ii) The MAP estimate is obtained as

d[log p(Data|ρ) + log p(ρ)]

dρ
=

4

ρ
− 7

1− ρ
= 0 ⇔= 4/11 .

(iii) p(y|ρ) = ρy(1− ρ). The joint probability is given by

p(y1, y3, y3, ρ) = p(y1, y2, y3|ρ)p(ρ) = ρ9(1− ρ)32ρ .

We find the MAP estimate by taking the gradient of the log joint and setting it to zero:

∂ log p(y1, y3, y3, ρ)

∂ρ
=

10

ρ
− 3

1− ρ
= 0 ⇔ ρ =

10

13
.

c) p(y⋆|x⋆,D) =
∫
p(y⋆|x⋆, w)p(w|D) dw = N (y⋆|x⋆m,x2

⋆v + 1).
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Assessor’s comments: A very popular and straightforward question. Most candidates
gave good answers. The main difficulty was coming up with the geometric distribution for
a series of coin tosses until you get heads for the first time and computing the predictive
distribution in a Bayesian linear regression model. The high average mark obtained by
candidates in this question was compensated by the lower average values obtained in Q3
and Q4.

Exercise 2

a) Bayesian decision theory selects the action that maximizes the expected reward under the pos-
terior distribution. In particular,

a⋆ = argmax
θ

∫
R(a,θ)p(θ|D) .

b)
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(iii)

p(yn|w, ϵ,xn) = ϵ
1

2
+ (1− ϵ)p(yn|w,xn)

ϵ
1

2
+ (1− ϵ)

[
1 + yn

2
σ(wTxn) +

1− yn
2

(1− σ(wTxn))

]
.

(iv) We have that the joint distribution for yn and zn is given by

p(yn, zn|w, ϵ,xn) = znϵ
1

2
+ (1− zn)(1− ϵ)p(yn|w,xn) .

The conditional is then

p(zn = 1|yn,w, ϵ,xn) =
ϵ 12

ϵ 12 + (1− ϵ)p(yn|w,xn)
.

We expect this probability to be high when p(yn|w,xn) is low. That is, when the model
does not describe the data well.

Assessor’s comments: The third most popular question. While most candidates gave
good answers, many struggled with part b) ii where they did not take into account the
randomness in the samples generated by the model when making predictions and with
part b) iii and c) iv where they did not come up with the correct probabilities.

Exercise 3

a) Let z = (z1, . . . , zN ) and x = (x1, . . . , xN ) and p(x, z|θ) =
∏N

i=1 p(xi, zi|θ). The maximum likeli-
hood estimate of θ is obtained by maximizing log p(x|θ) = log

∑
z p(x, z|θ), which is intractable.

The EM algorithm optimizes the lower-bound

log
∑
z

p(x, z|θ) ≥
N∑
i=1

∑
zi

q(zi) log
p(xi, zi|θ)

q(zi)
.

where the q(zi) form a variational distribution. EM iteratively maximizes this lower bound with
respect to the q(zi) (E-step) and with respect to θ (M-step). When the E-step guarantees that
q(zi) = p(zi|xi, θ) we have that the EM algorithm is guaranteed to find a maximum likelihood
estimate.

b)

(i) We have that

p(xi, zi|ρA, ρB) = 0.5

[(
10
xi

)
ρxi

A (1− ρA)
10−xi

]zi [( 10
xi

)
ρxi

B (1− ρB)
10−xi

]1−zi

.
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The free-energy is then

F(ρA, ρB , q1, . . . , q5) =

5∑
i=1

1∑
zi=0

pzii (1− pi)
(1−zi)

log

0.5

[(
10
xi

)
ρxi

A (1− ρA)
10−xi

]zi [( 10
xi

)
ρxi

B (1− ρB)
10−xi

]1−zi

pzii (1− pi)(1−zi)

=

5∑
i=1

pi [xi log ρA + (10− xi) log(1− ρA)− log pi] +

(1− pi) [xi log ρB + (10− xi) log(1− ρB)− log(1− pi)] + const .

(ii) We optimize F(ρA, ρB , q1, . . . , q5) with respect to ρAand ρB . We obtain

∂F(ρA, ρB , q1, . . . , q5)

∂ρA
=

5∑
i=1

pixi

ρA
− pi(10− xi)

1− ρA
= 0 ⇔ ρA =

∑5
i=1 pixi

10
∑5

i=1 pi
.

Similarly, we obtain

∂F(ρA, ρB , q1, . . . , q5)

∂ρB
=

5∑
i=1

(1− pi)xi

ρB
− (1− pi)(10− xi)

1− ρB
= 0 ⇔ ρB =

∑5
i=1(1− pi)xi

10
∑5

i=1(1− pi)
.

(iii) We optimize F(ρA, ρB , q1, . . . , q5) with respect to pi. We obtain

∂F(ρA, ρB , q1, . . . , q5)

∂pi
= xi log ρA + (10− xi) log(1− ρA)− xi log ρB −

(10− xi) log(1− ρB)− log
pi

1− pi
,

which is equal to zero if

pi = σ

(
xi log

ρA
ρB

+ (10− xi) log
(1− ρA)

(1− ρB)

)
,

where σ(x) = 1/(1 + exp(−x)).

Assessor’s comments: One of the two hardest questions and the least popular one.
Many students had problems deriving the update equations for the different steps (Esti-
mation and Maximization) of the EM algorithm.

Exercise 4

a) Monte Carlo methods approximate expectations Ep(x)[f(x)] for an abitrary function f(x) by
drawing N samples x1, . . . xN from p(x) and then computing an empirical average. In particular,

Ep(x)[f(x)] ≈ 1

N

N∑
i=1

f(xi) .
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The main advantage of Monte Carlo methods is that they are unbiased, so the more samples
we draw the more accurate that our approximation will be. However, the main disadvantage of
these methods is that they can have a slow convergence and many samples will be necessary to
obtain a small error in the approximation.

b)

(i) Rejection sampling works by sampling from a distribution q(x) such that Kq(x) ≥ p(x) for
x ∈ [−1, 1]. After drawing a sample x from q(x), we sample a variable u uniformly between
0 and Kq(x) and then accept the sample x if u ≤ p(x) and reject otherwise. To implement
this, the first step is to obtain a form for p(x). For this, have to normalize N (x|0, 1) in the
interval [−1, 1]. The normalization constant is

Z =

∫ 1

−1

N (x|0, 1) dx = 1− 2

∫ −1

−∞
N (x|0, 1) dx = 0.6826894 .

Therefore, p(x) = N (x|0, 1)/0.6826894. This density function attains its maximum at
x = 0 with value N (0|0, 1)/0.6826894 = 0.5843686. Since q(x) = 0.5 we have that K =
0.5843686/0.5 = 1.168737.

(ii) See previous point.

(iii) The acceptance probability is given by the ratio of the area of p(x) and the area of Kq(x)
in [−1, 1]. In particular, it is qual to 1/K = 1/1.168737 = 0.855.

c)

(i) The recursion equations are given by

p(Y1:T ) =
∑
XT

p(Y1:T , XT )

p(Y1:T , XT ) = p(YT |XT )
∑
XT−1

p(XT |XT−1)p(Y1:T−1, XT−1) .

(ii) Using the previous recurrsions, we must compute the following expressions to obtain P (Y1 =
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A, Y2 = B). The solution only requires the last 6 lines from this list:

p(Y1 = A,X1) = 0.7× 0.5(1−X1) + 0.3× 0.5X1

= 0.35(1−X1) + 0.15X1

p(Y1 = A, Y2 = B,X2) = p(Y2 = B|X2)
∑
X1

p(X2|X1)p(Y1 = A,X1)∑
X1

p(X2|X1)p(Y1 = A,X1) =
∑
X1

[
X10.8

X20.2(1−X2) + (1−X1)0.2
X20.8(1−X2)

]
×

[0.35(1−X1) + 0.15X1]

= [X20.19 + 0.31(1−X2)]

p(Y1 = A, Y2 = B,X2) = p(Y2 = B|X2)p(Y1 = A,X2)

= p(Y2 = B|X2) [X20.19 + 0.31(1−X2)]

= [0.7X2 + 0.3(1−X2)] [X20.19 + 0.31(1−X2)]

= 0.133X2 + 0.093(1−X2)

P (Y1 = A, Y2 = B) =
∑
X2

p(Y1 = A, Y2 = B,X2)

= 0.226 .

Assessor’s comments: One of the two most difficult questions in the exam. Many
students had problems with the part on sequential models. The parts on Monte Carlo
and sequential sampling were correctly addressed by most of them.
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