EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 19 April 20162 to 3.30

Module 4A15

AEROACOUSTICS

Answer not more than three questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
 Engineering Data Book
 CUED approved calculator allowed
 Attachment: 4A15 Aeroacoustics data sheet (6 pages).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version AA/6

1 Small explosive charges are often used as omnidirectional sound sources in underwater acoustics. The waveform of the pressure pulse produced is an abrupt rise followed by a tail that resembles a decaying exponential function. A charge is detonated at time $t=0$ and the following data are measured in the free field at a distance r_{0} from the charge:

$$
p\left(r_{0}, t\right)= \begin{cases}0, & t<r_{0} / c_{0} \\ A\left(1-\frac{t-r_{0} / c_{0}}{t_{0}}\right) e^{-\left(t-r_{0} / c_{0}\right) / t_{0}}, & t>r_{0} / c_{0}\end{cases}
$$

(a) Find the source strength $d Q(t) / d t$ by assuming the charge to be a point source. Q is the mass injection rate per unit volume.
(b) Obtain the expression for the pressure at any distance r in an infinite ocean.
(c) Obtain the total energy radiated to the far field.

Hint:

$$
\int_{0}^{\infty}\left(t_{0}-t\right)^{2} e^{-2 t / t_{0}} \mathrm{~d} t=\frac{t_{0}^{3}}{4}
$$

Version AA/6

2 Consider a low Mach-number, isentropic, cold, turbulent jet.
(a) By finding the sound radiated from a single compact eddy, show that the acoustic far-field density from the eddy scales as

$$
\rho^{\prime} \sim \rho_{0} \frac{x_{i}}{x} \frac{x_{j}}{x} \frac{l}{x} m^{4}
$$

where ρ_{0} is the ambient density, x is the distance from the source to the observer, x_{i} represents the component of \mathbf{x} in the i-direction, l is the length scale of the eddy, $m=u^{\prime} / c_{0}, u^{\prime}$ is the velocity scale of the eddy and c_{0} is the speed of sound.

$$
\text { Hint: } \quad \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \int T_{i j}\left(\mathbf{y}, t-\frac{x}{c_{0}}\right) \mathrm{d} \mathbf{y}=\frac{1}{c_{0}^{2}}\left(\frac{x_{i} x_{j}}{x^{2}}\right) \frac{\partial^{2}}{\partial t^{2}} \int T_{i j}\left(\mathbf{y}, t-\frac{x}{c_{0}}\right) \mathrm{d} \mathbf{y}
$$

(b) Use this result to deduce an expression for the acoustic power radiated by the jet (Lighthill's eighth power law).

Version AA/6

3 An acoustic liner for low frequency sound absorption consists of a perforated surface with an open-area ratio of 5%. Each hole opens onto a cavity of volume $0.0001 \mathrm{~m}^{3}$ and together the hole and cavity behave like a Helmholtz resonator. The difference between the pressure perturbation just outside a hole and within its cavity is equal to

$$
\rho_{0} l \frac{\partial u^{\prime}}{\partial t}+\alpha u^{\prime}
$$

where ρ_{0} is the mean density, l is 0.6 times the hole diameter, u^{\prime} is the velocity of the air flowing through the hole, $\alpha=\rho_{0} c_{0} k$ where k is a positive constant and c_{0} is the speed of sound. The ambient temperature is 600 K and pressure 1 bar .
(a) For sound of frequency ω, determine the relationship between the pressure $p_{1}^{\prime}(t)$ at a hole and u^{\prime}, the velocity of air through it in terms of ω, k and the hole diameter d.
(b) What hole diameter d would you choose to have resonance at 400 Hz for $k=0$?
(c) With this choice of hole size for sound at 400 Hz and with $k=0.1$:
(i) determine the rate of absorption of sound energy by a single hole in terms of the mean square pressure perturbation at the hole.
(ii) determine the rate of absorption of sound energy per unit area of the liner in terms of the mean square pressure perturbation at the liner surface.

Version AA/6

4 (a) A thin wall of mass per unit area m is located in the plane $x=0$ and is free to make small oscillations in the x direction. The wall separates two acoustic media, of sound speed and density c_{0} and ρ_{0} in $x<0$ and c_{1} and ρ_{1} in $x>0$. A plane sound wave is normally incident on the wall from $x<0$.
(i) Determine an expression for the ratio of the magnitudes of the reflected and incident pressures.
(ii) Identify two dimensionless numbers which determine the size of this quantity, and explain their physical significance.
(b) High frequency sound propagates through a continuous medium whose sound speed, $c(x)$, is given by

$$
\begin{equation*}
c(x)=c_{0} \exp (x / l) \tag{1}
\end{equation*}
$$

where c_{0} and l are the reference speed of sound and length, respectively. Sound is emitted from a source located at $x=y=0$ at an angle θ_{0} to the x-axis.
(i) Using ray theory, find the equation of the ray. (You may assume without proof that

$$
\begin{equation*}
\int \frac{\alpha \exp (x / l)}{\sqrt{1-\alpha^{2} \exp (2 x / l)}} \mathrm{d} x=l \sin ^{-1}(\alpha \exp (x / l))+k \tag{2}
\end{equation*}
$$

where k is a constant.)
(ii) Sketch a graph showing the rays corresponding to $\theta_{0}=\pi / 4$ and $\theta_{0}=\pi / 2 . \quad[15 \%]$
(iii) Without making any detailed calculations, explain briefly how one determines the variation of the acoustic pressure along a ray.

END OF PAPER

Version AA/6

THIS PAGE IS BLANK

