Undergraduate Teaching 2025-26

GT1

GT1

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2018-19

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the course website: http://mlg.eng.cam.ac.uk/teaching/4f13/

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models or documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please see the Booklist for Group F Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 17/05/2018 14:24

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2021-22

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen, Dr D Krueger

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 20/05/2021 07:49

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2023-24

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 30/05/2023 15:31

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2017-18

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the course website: http://mlg.eng.cam.ac.uk/teaching/4f13/

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models or documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please see the Booklist for Group F Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 17/01/2018 12:48

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2020-21

Module Leader

Prof Z Ghahramani

Lecturers

Prof Z Ghahramani & Dr M Hernandez-Lobato

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 07/10/2020 16:34

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2022-23

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen, Dr D Krueger

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 24/05/2022 13:12

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2019-20

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the course website: http://mlg.eng.cam.ac.uk/teaching/4f13/

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please see the Booklist for Group F Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 27/09/2019 12:18

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2024-25

Module Leader

Prof C Rasmussen

Lecturers

Prof C Rasmussen

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 31/05/2024 10:08

Engineering Tripos Part IIB, 4F13: Probabilistic Machine Learning, 2025-26

Module Leader

Dr H Ge

Lecturers

Dr H Ge, Dr A Tewari, Dr G Cantwell

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% coursework

Prerequisites

3F3 useful

Aims

The aims of the course are to:

  • introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning.

Objectives

As specific objectives, by the end of the course students should be able to:

  • demonstrate a good understanding of basic concepts in statistical machine learning.
  • apply basic ML methods to practical problems.

Content

Machine learning (ML) is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. The goal of machine learning is to automatically extract knowledge from observed data for the purposes of making predictions, decisions and understanding the world.

The aim of this module is to introduce students to basic concepts in machine learning, focusing on statistical methods for supervised and unsupervised learning. The module will be structured around three recent illustrative successful applications: Gaussian processes for regression and classification, Latent Dirichlet Allocation models for unsupervised text modelling and the TrueSkill probabilistic ranking model.

  • Linear models, maximum likelihood and Bayesian inference
  • Gaussian distribution and Gaussian process
  • Model selection
  • The Expectation Propagation (EP) algorithm
  • Latent variable models
  • The Expectation Maximization (EM) algorithm
  • Dirichlet Distribution and Dirichlet Process
  • Variational inference
  • Generative models, graphical models: Factor graphs

Lectures will be supported by Octave/MATLAB demonstrations.

A detailed syllabus and information about the coursework is available on the moodle website: https://www.vle.cam.ac.uk/course/view.php?id=69021

Coursework

Coursework Format

Due date

& marks

[Coursework activity #1 Gaussian Processes]

Coursework 1 brief description

Learning objective:

  • To gain experience in Bayesian Gaussian Process (GP) regression. 
  • To familiarise yourself with the GPML toolbox. 
  • To understand properties of covariance functions. 
  • To perform hyperparameter learning. 
  • To understand how model selection can be done using the marginal likelihood. 

Individual/group

Report / Presentation

anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

day during term, ex:

Fri week 5

[20/60]

[Coursework activity #2 Probabilistic Ranking]

Coursework 2 brief description

Learning objective:

  • To understand inference in continuous probabilistic models represented as factor graphs. 
  • To understand the Gibbs sampling algorithm and gain experience with using Markov chain Monte Carlo (MCMC) for inference. 
  • To understand message passing on (loopy) factor graphs. 
  • To learn how to construct approximate messages using Expectation Propagation (EP). 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

  Fri week 7

[20/60]

[Coursework activity #3 Latent Dirichlet Allocation models for documents]

Coursework 3 brief description

Learning objective:

  • To understand unsupervised learnign in discrete graphical models for documents. 
  • To develop an understanding of graphical models with more complex latent structure. 
  • To understnad and apply the Expectation Maximization (EM) and Gibbs sampling algorithms. 
  • To perform unsupervised learning using Latent Dirichlet Allocation model on a collection of documents. 

Individual Report

Anonymously marked for MPHIL/MLSALT & Undergraduates

Nonanonymously marked for PhDs

 Fri week 9

[20/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 04/06/2025 13:30

Engineering Tripos Part IIB, 4F12: Computer Vision, 2020-21

Module Leader

Dr I Budvytis

Lecturers

Prof R Cipolla, Dr I Budvytis

Timing and Structure

Michaelmas term. 16 lectures (including 3 examples classes). Assessment: 100% exam

Aims

The aims of the course are to:

  • introduce the principles, models and applications of computer vision.
  • cover image structure, projection, stereo vision, structure from motion and object detection and recognition.
  • give case studies of industrial (robotic) applications of computer vision, including visual navigation for autonomous robots, robot hand-eye coordination and novel man-machine interfaces.

Objectives

As specific objectives, by the end of the course students should be able to:

  • design feature detectors to detect, localise and track image features.
  • model perspective image formation and calibrate single and multiple camera systems.
  • recover 3D position and shape information from arbitrary viewpoints;
  • appreciate the problems in finding corresponding features in different viewpoints.
  • analyse visual motion to recover scene structure and viewer motion, and understand how this information can be used in navigation;
  • understand how simple object recognition systems can be designed so that they are independent of lighting and camera viewpoint.
  • appreciate the commerical and industrial potential of computer vision but understand the limitations of current methods.

Content

  • Introduction (1L)
    Computer vision: what is it, why study it and how ? The eye and the camera, vision as an information processing task. A geometrical framework for vision. 3D interpretation of 2D images. Applications.
     
  • Image structure (3L)
    Image intensities and structure: edges, corners and blobs. Edge detection, the aperture problem. Corner and blob  detection. Contour extraction using B-spline snakes. Texture. Feature descriptors and matching.
     
  • Projection (3L)
    Orthographic projection. Planar perspective projection. Vanishing points and lines. Projection matrix, homogeneous coordinates. Camera calibration, recovery of world position. Weak perspective and the affine camera. Projective invariants. 
     
  • Stereo vision and Structure from Motion (3L)
    Epipolar geometry and the essential matrix. Recovery of depth. Uncalibrated cameras and the fundamental matrix. The correspondence problem. Structure from motion. 3D shape from multiple view stereo.
     
  • Object detection and recognition  (3L)
    Basic architectures for deep learning in computer vision. Object detection, classification and semantic segmentation. Object recognition, feature embedding and metric learning. Reconstruction, localisation and structured deep learning.
     
  • Example classes (3L)
    Discussion of examples papers and past examination papers.

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 17/09/2020 08:07

Pages

Subscribe to GT1